找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI and Brain Connectivity; MICCAI Workshops, Na Thomas Schultz,Gemma Nedjati-Gilani,Eleftheria Pan Conference proc

[復(fù)制鏈接]
樓主: KEN
11#
發(fā)表于 2025-3-23 13:30:25 | 只看該作者
Choosing a Tractography Algorithm: On the Effects of Measurement Noise hence for mapping of structural connectivity in the human brain. This renders it crucially important to understand the influence of the various MRI imaging artifacts on the tractography results. In this paper, we focus on the thermal noise that is present in all MRI measurements and compare its eff
12#
發(fā)表于 2025-3-23 15:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:19 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:03 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:39 | 只看該作者
Groupwise Registration for Correcting Subject Motion and Eddy Current Distortions in Diffusion MRI Uaused by subject motion and eddy current induced geometric distortions. Conventional methods adopt a pairwise registration approach, in which the non-DWI, a.k.a. the b = 0 image, is used as a reference. In this work, a groupwise affine registration framework, using a global dissimilarity metric, is
16#
發(fā)表于 2025-3-24 08:19:09 | 只看該作者
1612-3786 as offers new perspectives and insights on current research challenges for those currently in the field. It will be of interest to researchers and practitioners in computer science, MR physics, and applied mathematics..978-3-319-37684-4978-3-319-02475-2Series ISSN 1612-3786 Series E-ISSN 2197-666X
17#
發(fā)表于 2025-3-24 12:54:26 | 只看該作者
neue betriebswirtschaftliche forschung (nbf)onnectivity and diffusion measures such as FA, is not known. In this work, we use multi-tensor based fiber connectivity to compare data acquired on two subjects with different acceleration factors (. = 1, 2, 3). We investigate and report the reproducibility of fiber bundles and diffusion measures be
18#
發(fā)表于 2025-3-24 18:44:40 | 只看該作者
Schriftenreihe Besteuerung der Unternehmung model that predicts the DWI data from all the diffusion gradients by the underpinning tissue microstructure. As a proof-of-concept, we show that the proposed SRR approach provides more accurate reconstruction results than the current SRR technique with synthetic white matter phantoms.
19#
發(fā)表于 2025-3-24 19:56:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:35:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 广昌县| 府谷县| 温州市| 宁河县| 鹤山市| 武胜县| 云梦县| 双江| 宜君县| 邹城市| 长沙县| 临西县| 那坡县| 军事| 宁都县| 宜川县| 睢宁县| 独山县| 克东县| 遵义县| 遵化市| 宾阳县| 西宁市| 文成县| 绥江县| 称多县| 五台县| 瑞昌市| 沙坪坝区| 阿荣旗| 井冈山市| 大竹县| 荣成市| 浦城县| 伊川县| 嘉荫县| 新乡市| 卓资县| 龙里县| 贞丰县|