找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; MICCAI Workshop, Ath Andrea Fuster,Aurobrata Ghosh,Marco Reisert Conference proceedings 2017 Springer Internat

[復(fù)制鏈接]
樓主: CLOG
41#
發(fā)表于 2025-3-28 14:51:10 | 只看該作者
42#
發(fā)表于 2025-3-28 21:34:55 | 只看該作者
43#
發(fā)表于 2025-3-29 01:18:42 | 只看該作者
44#
發(fā)表于 2025-3-29 03:55:39 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofenof techniques to measure axon diameterusing diffusion MR I have been proposed, majority of which uses single diffusion encoding (SDE) spin-echo sequence. However, recent theoretical research suggests that low-frequency oscillating gradient spin echo(OGSE ) offers benefits over SDE for imaging diamet
45#
發(fā)表于 2025-3-29 10:54:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:37:08 | 只看該作者
47#
發(fā)表于 2025-3-29 18:14:50 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofenrcuitry of each human amygdaloid subnuclei, there has yet to be an efficient imaging method for identifying these regions in vivo. A data-driven approach without prior knowledge provides advantages of efficient and objective assessments. The present study uses high angular and high spatial resolutio
48#
發(fā)表于 2025-3-29 23:20:00 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofenquisition methods and modeling techniques. These result in extremely large sets of streamelines (fibers) for each subject. The sets require large amount of storage and are often unwieldy and difficult to manipulate and analyze. We propose to use sparse representations for fibers to achieve a more co
49#
發(fā)表于 2025-3-30 00:24:45 | 只看該作者
50#
發(fā)表于 2025-3-30 07:59:12 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofenn reconstruction models can lead to better and more accurate measures of tissue properties: each measure provides different information on white matter microstructure in the brain, revealing different signs of disease. The diversity of computable measures makes it necessary to develop novel classifi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 青田县| 磐石市| 昂仁县| 拉孜县| 神农架林区| 靖宇县| 库车县| 当阳市| 浪卡子县| 常山县| 贺州市| 馆陶县| 鄂州市| 资兴市| 孝昌县| 漯河市| 电白县| 天峨县| 安仁县| 舞钢市| 赤水市| 会理县| 昭苏县| 新龙县| 甘泉县| 桃园县| 山丹县| 双柏县| 新蔡县| 台安县| 高雄市| 塔城市| 邵阳市| 沈丘县| 定襄县| 屯门区| 宜丰县| 长春市| 渝中区| 伊川县|