找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; MICCAI Workshop, She Elisenda Bonet-Carne,Jana Hutter,Fan Zhang Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: 搭話(huà)
41#
發(fā)表于 2025-3-28 18:23:59 | 只看該作者
Connectome 2.0: Cutting-Edge Hardware Ushers in New Opportunities for Computational Diffusion MRI can be measured accurately. Here we present an overview of the Connectome 2.0 project, which aims to bridge this gap by building the next-generation instrument for imaging microstructure and connectional anatomy in the human brain.
42#
發(fā)表于 2025-3-28 20:16:59 | 只看該作者
43#
發(fā)表于 2025-3-29 02:13:37 | 只看該作者
1612-3786 e number of rich full-color visualizations.Biologically or c.This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI 2019), held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), which took pl
44#
發(fā)表于 2025-3-29 06:17:04 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:50 | 只看該作者
Alternative Diffusion Anisotropy Metric from Reduced MRI Acquisitionsquired data, compatible with most popular diffusion MRI acquisition protocols. Results show that the proposed metric (1) is able to discriminate among different microstructure scenarios; (2) shows a robust behaviour in clinical studies.
46#
發(fā)表于 2025-3-29 12:34:49 | 只看該作者
47#
發(fā)表于 2025-3-29 17:37:48 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofen. In this study, a novel approach based on the physarum solver was investigated. Through the experiments on synthetic and real data sets, potentials and limitations of the approach were displayed and discussed.
48#
發(fā)表于 2025-3-29 23:15:09 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofens of each measurement, a neural network is trained on synthetic groundtruth data. According to our evaluation, this methodology produces more consistent and more plausible results than previous approaches.
49#
發(fā)表于 2025-3-30 00:16:47 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofens of other diffusion MRI processing methods. The methods proposed herein outperform the state of the art on q-space data in terms of quality and inference time. Our methods also outperform the state of the art on a standard novelty detection benchmark, and hence are also promising for non-MRI novelty detection.
50#
發(fā)表于 2025-3-30 05:40:59 | 只看該作者
https://doi.org/10.1007/978-3-658-33835-0 provide an accurate and efficient estimation of microstructural parameters in-silico and from DW-MRI data with moderately high b-values (4000?s/mm.). Further, we show, on in-vivo data, that the estimators trained from simulations can provide parameter estimates which are close to the values expected from histology.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周宁县| 彭阳县| 宜兰县| 阆中市| 桃源县| 马尔康县| 桓台县| 宝清县| 哈尔滨市| 扎囊县| 杭锦后旗| 上杭县| 井研县| 绍兴县| 潮州市| 翼城县| 六枝特区| 德清县| 天台县| 固镇县| 新昌县| 万载县| 绥中县| 威海市| 措美县| 怀安县| 元氏县| 上犹县| 普陀区| 新余市| 依兰县| 应城市| 黔西县| 安义县| 秦皇岛市| 克山县| 大同县| 科尔| 吉木萨尔县| 久治县| 西畴县|