找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; MICCAI Workshop, She Elisenda Bonet-Carne,Jana Hutter,Fan Zhang Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: 搭話(huà)
41#
發(fā)表于 2025-3-28 18:23:59 | 只看該作者
Connectome 2.0: Cutting-Edge Hardware Ushers in New Opportunities for Computational Diffusion MRI can be measured accurately. Here we present an overview of the Connectome 2.0 project, which aims to bridge this gap by building the next-generation instrument for imaging microstructure and connectional anatomy in the human brain.
42#
發(fā)表于 2025-3-28 20:16:59 | 只看該作者
43#
發(fā)表于 2025-3-29 02:13:37 | 只看該作者
1612-3786 e number of rich full-color visualizations.Biologically or c.This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI 2019), held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), which took pl
44#
發(fā)表于 2025-3-29 06:17:04 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:50 | 只看該作者
Alternative Diffusion Anisotropy Metric from Reduced MRI Acquisitionsquired data, compatible with most popular diffusion MRI acquisition protocols. Results show that the proposed metric (1) is able to discriminate among different microstructure scenarios; (2) shows a robust behaviour in clinical studies.
46#
發(fā)表于 2025-3-29 12:34:49 | 只看該作者
47#
發(fā)表于 2025-3-29 17:37:48 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofen. In this study, a novel approach based on the physarum solver was investigated. Through the experiments on synthetic and real data sets, potentials and limitations of the approach were displayed and discussed.
48#
發(fā)表于 2025-3-29 23:15:09 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofens of each measurement, a neural network is trained on synthetic groundtruth data. According to our evaluation, this methodology produces more consistent and more plausible results than previous approaches.
49#
發(fā)表于 2025-3-30 00:16:47 | 只看該作者
Manfred Bornhofen,Martin C. Bornhofens of other diffusion MRI processing methods. The methods proposed herein outperform the state of the art on q-space data in terms of quality and inference time. Our methods also outperform the state of the art on a standard novelty detection benchmark, and hence are also promising for non-MRI novelty detection.
50#
發(fā)表于 2025-3-30 05:40:59 | 只看該作者
https://doi.org/10.1007/978-3-658-33835-0 provide an accurate and efficient estimation of microstructural parameters in-silico and from DW-MRI data with moderately high b-values (4000?s/mm.). Further, we show, on in-vivo data, that the estimators trained from simulations can provide parameter estimates which are close to the values expected from histology.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴青县| 班戈县| 五常市| 荣昌县| 兴文县| 巫溪县| 鲁甸县| 家居| 卓资县| 滕州市| 普陀区| 新蔡县| 凤城市| 葫芦岛市| 漳州市| 兴安盟| 安康市| 昭通市| 新乡市| 普陀区| 宜宾市| 七台河市| 隆尧县| 攀枝花市| 武平县| 菏泽市| 郎溪县| 华池县| 广东省| 蓝田县| 海城市| 汕头市| 琼结县| 香河县| 原阳县| 蓬安县| 紫金县| 尼玛县| 什邡市| 衡山县| 驻马店市|