找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: mentor
41#
發(fā)表于 2025-3-28 15:22:41 | 只看該作者
Learning Anatomical Segmentations for Tractography ?from Diffusion MRIck of representing tracts as volumetric labels, rather than sets of streamlines, is that it precludes point-wise analyses of microstructural or geometric features along a tract. Traditional tractography pipelines, which do allow such analyses, can benefit from detailed whole-brain segmentations to g
42#
發(fā)表于 2025-3-28 21:44:17 | 只看該作者
43#
發(fā)表于 2025-3-28 23:31:56 | 只看該作者
44#
發(fā)表于 2025-3-29 06:46:33 | 只看該作者
Q-Space Quantitative Diffusion MRI Measures Using a Stretched-Exponential Representationiffusion representation is related to the restricted diffusion and can provide information about the underlying tissue properties. In this paper, we analytically derive .th order statistics of the signal considering a stretched-exponential representation of the diffusion. Then, we retrieve the Q-spa
45#
發(fā)表于 2025-3-29 08:59:26 | 只看該作者
46#
發(fā)表于 2025-3-29 14:00:14 | 只看該作者
DW-MRI Microstructure Model of Models Captured Via Single-Shell Bottleneck Deep Learning (DW-MRI) signals each addressing recovery of specific tissue properties (e.g. pathology based, volume fraction of tissues). Generically, specific tissue properties are recovered via a category of methods termed as tissue compartment modeling. Many recent compartmental approaches require two or more
47#
發(fā)表于 2025-3-29 18:07:09 | 只看該作者
Deep Learning Model Fitting for Diffusion-Relaxometry: A Comparative Studyslow and its performance can be affected by the presence of different local minima in the fitting objective function. Recently, machine learning techniques, including deep neural networks (DNNs), have been proposed as robust alternatives to NLLS. Here we present a deep learning?implementation of qMR
48#
發(fā)表于 2025-3-29 23:02:13 | 只看該作者
Pretraining Improves Deep Learning Based Tissue Microstructure Estimations of the brain. Due to the constraint of imaging time, the quality of dMRI scans can be limited by the number of diffusion gradients and the spatial resolution, and deep learning based approaches have been developed to provide high-quality estimation of tissue microstructure from the low-quality dif
49#
發(fā)表于 2025-3-30 03:06:46 | 只看該作者
50#
發(fā)表于 2025-3-30 04:05:41 | 只看該作者
Computational Diffusion MRI978-3-030-73018-5Series ISSN 1612-3786 Series E-ISSN 2197-666X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 洛宁县| 葫芦岛市| 宿迁市| 镇康县| 苍南县| 凤山市| 华阴市| 东乡县| 克什克腾旗| 濮阳县| 深泽县| 营口市| 射洪县| 印江| 孝昌县| 南城县| 荆州市| 滦南县| 连江县| 万州区| 青龙| 福清市| 连江县| 霍邱县| 龙州县| 通海县| 奇台县| 赤峰市| 交口县| 绥化市| 临沭县| 永定县| 全椒县| 松阳县| 池州市| 永和县| 育儿| 商洛市| 波密县| 钟山县|