找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; 12th International W Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi Conference proceedings 2021 Springer N

[復制鏈接]
樓主: 淹沒
21#
發(fā)表于 2025-3-25 05:53:51 | 只看該作者
Ermittlungsm?glichkeiten der Steuerfahndungical applicability, we present a novel, efficient algorithm for region-to-region geodesic tractography?which extends existing point-to-point algorithms and incorporates anatomical knowledge by assuming a topographic organization?of fibers. The proposed method connects only seed and target voxels tha
22#
發(fā)表于 2025-3-25 07:33:40 | 只看該作者
Ausl?ser für Ermittlungen der Steuerfahndungg., the FSL XTRACT toolbox, provides an alternative method of ROI analysis by estimating tract regions in an individual native diffusion space, but the exact advantages and disadvantages compared to using a standard space have not been well documented. In the present study, we perform ROI analysis o
23#
發(fā)表于 2025-3-25 13:54:09 | 只看該作者
24#
發(fā)表于 2025-3-25 17:13:35 | 只看該作者
Grundzüge des Ermittlungsverfahrenst to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of
25#
發(fā)表于 2025-3-25 21:52:07 | 只看該作者
https://doi.org/10.1007/978-3-322-90596-3crostructure. We report the ground-truth tissue volume fractions (“intra-axonal”, “extra-axonal”, “myelin”), the fibre density, the bundle density and the fibre orientation distributions (FODs). We believe that this characterization will be beneficial for validating quantitative structural connectiv
26#
發(fā)表于 2025-3-26 01:20:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:01:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:12 | 只看該作者
Generalised Hierarchical Bayesian Microstructure Modelling for Diffusion MRIrostructural?models, and fit the models with a Markov chain Monte Carlo (MCMC)?algorithm. We implement our method by utilising Dmipy, a microstructure?modelling software package for diffusion MRI?data. Our code is available at github.com/PaddySlator/dmipy-bayesian.
30#
發(fā)表于 2025-3-26 18:50:16 | 只看該作者
Brain Tissue Microstructure Characterization Using dMRI Based Autoencoder Neural-Networks data fidelity and the number of microstructural features. Our results show how this number is impacted by the number of shells and the .-values used to sample the dMRI signal. We also show how our technique paves the way to a richer characterization of the brain tissue microstructure in-vivo.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
齐河县| 天台县| 应用必备| 锡林浩特市| 都江堰市| 阿克陶县| 遵义县| 饶河县| 余江县| 宁明县| 杂多县| 神木县| 甘谷县| 抚顺县| 伊金霍洛旗| 彭泽县| 新闻| 顺义区| 霍城县| 鄂托克前旗| 来凤县| 湛江市| 利辛县| 浙江省| 清远市| 库伦旗| 西城区| 宣武区| 隆化县| 甘南县| 营口市| 叙永县| 克什克腾旗| 临西县| 泸水县| 巨鹿县| 乌兰浩特市| 桦川县| 通江县| 尖扎县| 祁连县|