找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Data and Social Networks; 10th International C David Mohaisen,Ruoming Jin Conference proceedings 2021 Springer Nature Switzer

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:02:56 | 只看該作者
Approximation Algorithm for Maximizing Nonnegative Weakly Monotonic Set Functionsions in practice do not fully meet the characteristics of diminishing returns. In this paper, we consider the problem of maximizing unconstrained non-negative weakly-monotone non-submodular set function. The generic submodularity ratio . is a bridge connecting the non-negative monotone functions and
42#
發(fā)表于 2025-3-28 21:02:36 | 只看該作者
43#
發(fā)表于 2025-3-29 02:35:22 | 只看該作者
Maximizing the Sum of a Supermodular Function and a Monotone DR-submodular Function Subject to a Kna of the sum of a supermodular function and a monotone DR-submodular function on the integer lattice. As our main contribution, we present a streaming algorithm under the assumption that the optimum is known, and a two-pass streaming algorithm in general case. The proposed algorithms are proved to ha
44#
發(fā)表于 2025-3-29 04:56:07 | 只看該作者
A Framework for Accelerating Graph Convolutional Networks on Massive Datasetsicularly among them, because of massive scale of graphs, there is not only a large computation time, but also the need for partitioning and loading data multiple times. This paper presents a different framework in which existing GCN methods can be accelerated for execution on large graphs. Building
45#
發(fā)表于 2025-3-29 07:51:46 | 只看該作者
AdvEdge: Optimizing Adversarial Perturbations Against Interpretable Deep Learningion for a given task is derived from the correct problem representation and not from the misuse of artifacts in the data. Hence, interpretation models have become a key ingredient in developing deep learning models. Utilizing interpretation models enables a better understanding of how DNN models wor
46#
發(fā)表于 2025-3-29 12:10:34 | 只看該作者
47#
發(fā)表于 2025-3-29 18:18:04 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:32 | 只看該作者
49#
發(fā)表于 2025-3-30 02:54:39 | 只看該作者
50#
發(fā)表于 2025-3-30 05:14:21 | 只看該作者
MIC Model for Cervical Cancer Risk Factors Deep Association Analysisrs for CC including the direct risk factors and indirect risk factors that may be caused by other diseases or reasons. In this paper, we proposed a MIC (Multiple Indicators Correlation) model to resolve the problem of analyzing risk factors by establishing the indicators structure. Based on the clos
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渝中区| 前郭尔| 济宁市| 当涂县| 萍乡市| 台北县| 晋中市| 广南县| 和龙市| 天长市| 南丹县| 蓬溪县| 万盛区| 沭阳县| 汤原县| 迁安市| 琼结县| 陆丰市| 休宁县| 西安市| 云阳县| 德化县| 海晏县| 渝北区| 横山县| 界首市| 万宁市| 宁晋县| 沙洋县| 鹿泉市| 武汉市| 台东市| 慈溪市| 越西县| 石河子市| 铜鼓县| 蓬溪县| 绥宁县| 商南县| 凌海市| 仪征市|