找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Collective Intelligence. Technologies and Applications; 4th International Co Ngoc-Thanh Nguyen,Kiem Hoang,Piotr J?drzejowicz

[復(fù)制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 07:15:03 | 只看該作者
https://doi.org/10.1007/978-1-4899-1615-0pment phases. In particular, the testing and debugging phases, more precisely, how to chose those tests more suitable to be applied, is simplified since tests are automatically extracted from the specification.
22#
發(fā)表于 2025-3-25 08:38:04 | 只看該作者
https://doi.org/10.1007/978-3-8349-9809-5 with the Share-Per-Link(SPL) architecture where partial wavelength converters are distributed at each output port. A continuous-time Markov chain model is proposed to analyze the performance of OBS core nodes operated with the deflection routing rule.
23#
發(fā)表于 2025-3-25 14:04:02 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:46 | 只看該作者
OCE: An Online Colaborative Editorpment phases. In particular, the testing and debugging phases, more precisely, how to chose those tests more suitable to be applied, is simplified since tests are automatically extracted from the specification.
25#
發(fā)表于 2025-3-25 23:55:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:44 | 只看該作者
0302-9743 proceedings of the 4th International Conference on Computational Collective Intelligence, ICCCI, held in Ho Chi Minh City, Vietnam, in November 2012..The 113 revised full papers presented were carefully reviewed and selected from 397 submissions. The papers are organized in topical sections on (Par
27#
發(fā)表于 2025-3-26 06:06:52 | 只看該作者
Tarski, Truth, and Natural Languages of current database size. Therefore, we propose an Efficient Frequent Pattern Mining Model (EFP-M2) to mine the frequent patterns in timely manner. The result shows that the algorithm in EFP-M2l is outperformed at least at 2 orders of magnitudes against the benchmarked FP-Growth.
28#
發(fā)表于 2025-3-26 11:55:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:56:51 | 只看該作者
EFP-M2: Efficient Model for Mining Frequent Patterns in Transactional Database of current database size. Therefore, we propose an Efficient Frequent Pattern Mining Model (EFP-M2) to mine the frequent patterns in timely manner. The result shows that the algorithm in EFP-M2l is outperformed at least at 2 orders of magnitudes against the benchmarked FP-Growth.
30#
發(fā)表于 2025-3-26 18:52:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 18:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东县| 台前县| 万安县| 兴宁市| 靖安县| 汤原县| 永清县| 双城市| 凤庆县| 无锡市| 称多县| 招远市| 乌兰浩特市| 武乡县| 民丰县| 巴林右旗| 金溪县| 泾源县| 灵川县| 兴化市| 北碚区| 克东县| 砚山县| 页游| 永川市| 南皮县| 黎川县| 江川县| 铜山县| 进贤县| 永济市| 郸城县| 错那县| 甘南县| 建宁县| 长兴县| 山丹县| 连州市| 乌苏市| 汪清县| 阳原县|