找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Collective Intelligence. Technologies and Applications; 4th International Co Ngoc-Thanh Nguyen,Kiem Hoang,Piotr J?drzejowicz

[復(fù)制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 07:15:03 | 只看該作者
https://doi.org/10.1007/978-1-4899-1615-0pment phases. In particular, the testing and debugging phases, more precisely, how to chose those tests more suitable to be applied, is simplified since tests are automatically extracted from the specification.
22#
發(fā)表于 2025-3-25 08:38:04 | 只看該作者
https://doi.org/10.1007/978-3-8349-9809-5 with the Share-Per-Link(SPL) architecture where partial wavelength converters are distributed at each output port. A continuous-time Markov chain model is proposed to analyze the performance of OBS core nodes operated with the deflection routing rule.
23#
發(fā)表于 2025-3-25 14:04:02 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:46 | 只看該作者
OCE: An Online Colaborative Editorpment phases. In particular, the testing and debugging phases, more precisely, how to chose those tests more suitable to be applied, is simplified since tests are automatically extracted from the specification.
25#
發(fā)表于 2025-3-25 23:55:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:44 | 只看該作者
0302-9743 proceedings of the 4th International Conference on Computational Collective Intelligence, ICCCI, held in Ho Chi Minh City, Vietnam, in November 2012..The 113 revised full papers presented were carefully reviewed and selected from 397 submissions. The papers are organized in topical sections on (Par
27#
發(fā)表于 2025-3-26 06:06:52 | 只看該作者
Tarski, Truth, and Natural Languages of current database size. Therefore, we propose an Efficient Frequent Pattern Mining Model (EFP-M2) to mine the frequent patterns in timely manner. The result shows that the algorithm in EFP-M2l is outperformed at least at 2 orders of magnitudes against the benchmarked FP-Growth.
28#
發(fā)表于 2025-3-26 11:55:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:56:51 | 只看該作者
EFP-M2: Efficient Model for Mining Frequent Patterns in Transactional Database of current database size. Therefore, we propose an Efficient Frequent Pattern Mining Model (EFP-M2) to mine the frequent patterns in timely manner. The result shows that the algorithm in EFP-M2l is outperformed at least at 2 orders of magnitudes against the benchmarked FP-Growth.
30#
發(fā)表于 2025-3-26 18:52:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 20:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 衡阳市| 阳谷县| 云安县| 永济市| 南昌县| 中宁县| 益阳市| 明光市| 汶上县| 姜堰市| 密山市| 赣榆县| 左云县| 门源| 永仁县| 崇阳县| 龙门县| 防城港市| 南川市| 永修县| 淳化县| 修文县| 沈阳市| 西畴县| 浦江县| 五华县| 保山市| 响水县| 三门峡市| 金昌市| 嵊泗县| 邵东县| 都江堰市| 宁波市| 怀集县| 吴川市| 柳江县| 梧州市| 桃江县| 诏安县|