找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Aspects of Linear Control; Claude Brezinski Book 20021st edition Kluwer Academic Publishers 2002 approximation.approximation

[復制鏈接]
樓主: 平凡人
21#
發(fā)表于 2025-3-25 03:19:26 | 只看該作者
Transform Inversion,In this Chapter, we will present some methods for the numerical inversion of the Laplace transform. We will also discuss the inversion of the .-transform which can be considered as the discrete analog of the Laplace transform.
22#
發(fā)表于 2025-3-25 09:33:04 | 只看該作者
Linear Algebra Issues,The aim of this Chapter is to present some issues of numerical linear algebra which are relevant to control problems.
23#
發(fā)表于 2025-3-25 15:22:42 | 只看該作者
Systems of Linear Algebraic Equations,We consider the . × . system of linear equations. and restrict ourselves to real systems, the case of complex ones being an easy extension.
24#
發(fā)表于 2025-3-25 18:41:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:34:08 | 只看該作者
26#
發(fā)表于 2025-3-26 02:21:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:12:43 | 只看該作者
Appendix: The Mathematics of Model Reduction,In this Chapter, we do not intend to present new algorithms for model reduction but to throw some light on the mathematics behind projection techniques which are currently used for that purpose. In this respect, what follows can be considered as a continuation of [14, 15, 17] and the literature quoted in these papers.
28#
發(fā)表于 2025-3-26 10:13:34 | 只看該作者
Numerical Methods and Algorithmshttp://image.papertrans.cn/c/image/232118.jpg
29#
發(fā)表于 2025-3-26 15:37:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:18 | 只看該作者
Morteza A. M. Torkamani,Ahmad K. Ahmadigiven in [83] where the techniques relevant to linear algebra can be found, and the article on control theory in [49, vol. 1, art. 86]. We also refer to the encyclopedic volume [66], where most of the topics covered in this Chapter are represented. There exist an enormous literature on control theor
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天柱县| 新津县| 宁阳县| 出国| 金秀| 沿河| 枞阳县| 定远县| 北川| 伊宁县| 揭西县| 黄骅市| 蒲江县| 岑溪市| 巫溪县| 竹北市| 土默特左旗| 贵德县| 张家川| 突泉县| 平潭县| 全南县| 鄯善县| 南开区| 静乐县| 深州市| 昌黎县| 永宁县| 莲花县| 泊头市| 榆林市| 咸丰县| 南陵县| 台东市| 大埔县| 望奎县| 隆安县| 伊吾县| 隆回县| 阳原县| 永顺县|