找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Algebraic Number Theory; Michael E. Pohst Book 1993 Springer Basel AG 1993 Algebra.coding theory.cryptography.finite field.g

[復(fù)制鏈接]
樓主: culinary
11#
發(fā)表于 2025-3-23 13:38:44 | 只看該作者
12#
發(fā)表于 2025-3-23 14:54:24 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:54 | 只看該作者
Damped Single Degree-of-Freedom Systemeterminant of a transition matrix from a basis of .. to a basis of ... Prom chapters III, IV we recall that ∣d(.)∣ = .(..)., ∣..∣ = .(..).. Since with ω also .ω is an integer of . the following Lemma is essentially a consequence of Lemma 1.6 in chapter III.
15#
發(fā)表于 2025-3-24 05:21:13 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:00 | 只看該作者
Algebraic number fields, we will need the counterpart of the rational integers in . These integers of . are defined as those elements of . which are .., i.e. zeros of monic non-constant polynomials of ?[.]. From (27) we conclude that . itself is an integer of . We proceed to show that the integers of . form a ring.
17#
發(fā)表于 2025-3-24 13:39:32 | 只看該作者
18#
發(fā)表于 2025-3-24 17:54:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:32:27 | 只看該作者
https://doi.org/10.1007/978-1-4615-7918-2rs .. of a number field . (.), the computation of the ... of ., and the computation of the ... of . These three invariants of . are essential for describing the differences between the arithmetic in . and the arithmetic in the rational numbers ?. They are used in many applications, for example, in s
20#
發(fā)表于 2025-3-24 23:51:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 邮箱| 泸州市| 苍梧县| 巴林右旗| 封丘县| 汉川市| 新乡县| 曲靖市| 五大连池市| 宝丰县| 青海省| 时尚| 商河县| 临夏市| 榆中县| 平顶山市| 凌海市| 东兴市| 林芝县| 临沭县| 姚安县| 枝江市| 黔江区| 渭源县| 穆棱市| 台湾省| 桐城市| 泰州市| 泰和县| 苍山县| 胶南市| 文水县| 馆陶县| 柯坪县| 邻水| 金川县| 天祝| 和田市| 平昌县| 沙雅县|