找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Algebraic Geometry; Frédéric Eyssette,André Galligo Conference proceedings 1993 Birkh?user Boston 1993 Mathematica.Volume.al

[復(fù)制鏈接]
查看: 12742|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:30:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Algebraic Geometry
編輯Frédéric Eyssette,André Galligo
視頻videohttp://file.papertrans.cn/233/232088/232088.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Computational Algebraic Geometry;  Frédéric Eyssette,André Galligo Conference proceedings 1993 Birkh?user Boston 1993 Mathematica.Volume.al
出版日期Conference proceedings 1993
關(guān)鍵詞Mathematica; Volume; algebra; algebraic geometry; algebraic number theory; commutative algebra; commutativ
版次1
doihttps://doi.org/10.1007/978-1-4612-2752-6
isbn_softcover978-1-4612-7652-4
isbn_ebook978-1-4612-2752-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1993
The information of publication is updating

書目名稱Computational Algebraic Geometry影響因子(影響力)




書目名稱Computational Algebraic Geometry影響因子(影響力)學(xué)科排名




書目名稱Computational Algebraic Geometry網(wǎng)絡(luò)公開度




書目名稱Computational Algebraic Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Algebraic Geometry被引頻次




書目名稱Computational Algebraic Geometry被引頻次學(xué)科排名




書目名稱Computational Algebraic Geometry年度引用




書目名稱Computational Algebraic Geometry年度引用學(xué)科排名




書目名稱Computational Algebraic Geometry讀者反饋




書目名稱Computational Algebraic Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:03:51 | 只看該作者
Locally effective objects and algebraic topology,ll if and only if the space . is ..; in another case, the group measures the lack of simple connectivity. Many other groups can be associated to a topological space, evaluating certain properties of this space: homology groups,.-theory groups,etc.
地板
發(fā)表于 2025-3-22 04:41:21 | 只看該作者
,Complexity of Bezout’s Theorem II Volumes and Probabilities,systems is .. where . = Π .. is the Be zout number. We estimate the volume of the subspace of badly conditioned problems and show that volume is bounded by a small degree polynomial in ., . and . times the reciprocal of the condition number to the fourth power. Here . is the dimension of the space of systems.
5#
發(fā)表于 2025-3-22 12:48:11 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:52 | 只看該作者
,Decision of Algebra Isomorphisms Using Gr?bner Bases, problem. One is to compute the radical of . directly and then to rewrite the above determinant . modulo this radical. The other method is to judge solvability of a certain system of algebraic equations: the union of . and a new polynomial. As a result, it is shown that the isomorphism problem for finitely presented algebras is decidable.
7#
發(fā)表于 2025-3-22 18:33:27 | 只看該作者
The Resultant via a Koszul Complex,ou, however from a rather different point of view). So, I will give here elementary and short proofs of the theorems needed—except the well-known acyclicity of the Koszul complex and the “Principal Theorem of Elimination”—and present some useful remarks leading to the subsequent algorithm. In fact,
8#
發(fā)表于 2025-3-23 00:11:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:27:37 | 只看該作者
Damped Motion of Shear Buildings show how the information provided by the individual quadratic forms may be combined to determine the number of real points satisfying a conjunction of constraints. The complexity of the computation is polynomial in the dimension as a vector space of the quotient ring associated to the defining equa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长兴县| 堆龙德庆县| 那坡县| 西藏| 九龙城区| 淮滨县| 绥德县| 涞源县| 丰顺县| 周口市| 长兴县| 嘉义县| 鲜城| 安新县| 遵义市| 衡阳县| 甘泉县| 民乐县| 新津县| 鲁甸县| 恩施市| 蒙阴县| 扬中市| 勃利县| 巴里| 新兴县| 阳谷县| 五家渠市| 萨迦县| 济阳县| 城市| 凤台县| 吉隆县| 新乡县| 台中市| 汝城县| 新津县| 延边| 桃江县| 昭觉县| 栖霞市|