找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation, Physics and Beyond; International Worksh Michael J. Dinneen,Bakhadyr Khoussainov,André Nies Book 2012 Springer-Verlag GmbH Ber

[復制鏈接]
樓主: Cataplexy
51#
發(fā)表于 2025-3-30 11:19:17 | 只看該作者
Fundamentals of Topological Insulators,mputable functions, the existence of universal machines and the invariance under the choice of machine. Recently, the notion of descriptional complexity for finite-state computable functions has been introduced by Calude et al. For the latter theory, one cannot rely on the existence of universal mac
52#
發(fā)表于 2025-3-30 15:08:50 | 只看該作者
https://doi.org/10.1007/978-3-658-11811-2d in classical language, yield major algorithmic randomness notions. He proved several results connecting constructive analysis and randomness that were rediscovered only much later..We give an overview in mostly chronological order. We sketch a proof that Demuth’s notion of Denjoy sets (or reals) c
53#
發(fā)表于 2025-3-30 16:58:12 | 只看該作者
54#
發(fā)表于 2025-3-30 21:15:30 | 只看該作者
Dynamic correlations in quantum magnets, a first order formula on the integers and decides (after a finite number of computations and always with a right answer) whether this formula is true or false. There are also many other limitations of usual computing theory that can be seen as generalisations of G?del incompleteness theorem: for ex
55#
發(fā)表于 2025-3-31 03:59:23 | 只看該作者
Luttinger liquids: the basic concepts,ere a computable bound on the use function is explicitly specified. This elaboration enables us to deal with the notion of asymptotic behavior in a manner like in computational complexity theory, while staying in computability theory. We apply the elaboration to sets which appear in the statistical
56#
發(fā)表于 2025-3-31 05:52:47 | 只看該作者
57#
發(fā)表于 2025-3-31 11:25:52 | 只看該作者
58#
發(fā)表于 2025-3-31 15:31:03 | 只看該作者
59#
發(fā)表于 2025-3-31 19:12:30 | 只看該作者
Computation, Physics and Beyond978-3-642-27654-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
60#
發(fā)表于 2025-3-31 22:52:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 01:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
甘孜县| 池州市| 贵州省| 玉溪市| 长兴县| 定州市| 铜川市| 拜泉县| 濮阳市| 玉溪市| 安顺市| 阿瓦提县| 天门市| 柘城县| 蕲春县| 通山县| 临朐县| 济阳县| 重庆市| 察隅县| 林周县| 贵港市| 大渡口区| 遂宁市| 南川市| 清水河县| 永仁县| 长葛市| 鲜城| 汝州市| 房山区| 新龙县| 白城市| 腾冲县| 岳西县| 宜州市| 昭觉县| 焉耆| 邵武市| 华池县| 缙云县|