找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation, Physics and Beyond; International Worksh Michael J. Dinneen,Bakhadyr Khoussainov,André Nies Book 2012 Springer-Verlag GmbH Ber

[復制鏈接]
樓主: Cataplexy
41#
發(fā)表于 2025-3-28 16:30:51 | 只看該作者
42#
發(fā)表于 2025-3-28 18:54:01 | 只看該作者
978-3-642-27653-8Springer-Verlag GmbH Berlin Heidelberg 2012
43#
發(fā)表于 2025-3-28 23:26:49 | 只看該作者
44#
發(fā)表于 2025-3-29 06:46:52 | 只看該作者
45#
發(fā)表于 2025-3-29 07:14:09 | 只看該作者
https://doi.org/10.1007/978-3-319-58826-1 and Slaman?[5]. This joint effort led to a full characterization of lower semicomputable random reals, both as those that can be expressed as a “Chaitin Omega” and those that are maximal for the Solovay reducibility. The original proofs were somewhat involved; in this paper, we present these result
46#
發(fā)表于 2025-3-29 12:20:26 | 只看該作者
https://doi.org/10.1007/978-3-319-58826-1n a constructive convergence proof for the algorithm, one must add some hypotheses such as Markov’s principle or the locatedness of a certain range; and that in the finite-dimensional case, the existence of both the infimum and the supremum of the two projections suffices for the convergence of the
47#
發(fā)表于 2025-3-29 18:25:15 | 只看該作者
Springer Monographs in Mathematicsexity measure is a generalization of Kolmogorov/Chaitin complexity, also known as algorithmic or static complexity. In this paper we continue this effort by extending some of the well known results for plain and prefix-free complexities to the general case of Blum universal static complexity. We als
48#
發(fā)表于 2025-3-29 23:21:22 | 只看該作者
49#
發(fā)表于 2025-3-30 00:22:37 | 只看該作者
50#
發(fā)表于 2025-3-30 07:00:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泗洪县| 铜梁县| 台安县| 祁门县| 兴仁县| 高邑县| 祁连县| 自贡市| 阜平县| 建始县| 宜良县| 土默特右旗| 玉山县| 响水县| 和林格尔县| 临桂县| 苗栗市| 高尔夫| 揭东县| 广东省| 和硕县| 若羌县| 舒城县| 南涧| 襄樊市| 江油市| 扶余县| 金秀| 鹤庆县| 上犹县| 龙胜| 吉安市| 曲水县| 通州区| 凌海市| 玉门市| 麻阳| 海盐县| 内乡县| 滦南县| 资阳市|