找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computability of Julia Sets; Mark Braverman,Michael Yampolsky Book 2009 Springer-Verlag Berlin Heidelberg 2009 Computer.Julia set.complexi

[復(fù)制鏈接]
查看: 47226|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:47:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computability of Julia Sets
編輯Mark Braverman,Michael Yampolsky
視頻videohttp://file.papertrans.cn/233/232032/232032.mp4
概述The first book describing in detail some spectacular results on computation and complex dynamical systems..Includes supplementary material:
叢書名稱Algorithms and Computation in Mathematics
圖書封面Titlebook: Computability of Julia Sets;  Mark Braverman,Michael Yampolsky Book 2009 Springer-Verlag Berlin Heidelberg 2009 Computer.Julia set.complexi
描述.Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. ..Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, .it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable.. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. ..The book summarizes the present knowledge (most of it from the authors‘ own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems. .
出版日期Book 2009
關(guān)鍵詞Computer; Julia set; complexity; computability; computational complexity; computer science; dynamische Sys
版次1
doihttps://doi.org/10.1007/978-3-540-68547-0
isbn_softcover978-3-642-08806-3
isbn_ebook978-3-540-68547-0Series ISSN 1431-1550
issn_series 1431-1550
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Computability of Julia Sets影響因子(影響力)




書目名稱Computability of Julia Sets影響因子(影響力)學(xué)科排名




書目名稱Computability of Julia Sets網(wǎng)絡(luò)公開(kāi)度




書目名稱Computability of Julia Sets網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Computability of Julia Sets被引頻次




書目名稱Computability of Julia Sets被引頻次學(xué)科排名




書目名稱Computability of Julia Sets年度引用




書目名稱Computability of Julia Sets年度引用學(xué)科排名




書目名稱Computability of Julia Sets讀者反饋




書目名稱Computability of Julia Sets讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:15:56 | 只看該作者
地板
發(fā)表于 2025-3-22 07:46:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:56 | 只看該作者
Introduction to Computability,e modern computers. In 1936 two essentially equivalent models were independently proposed by A. Turing [Tur36] and E. Post [Pos36] (and many others have appeared since). Turing’s work has been the most influential, and his concept of a . has become a universally accepted formal model of computation.
6#
發(fā)表于 2025-3-22 16:26:07 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:59 | 只看該作者
Stress Management: Individual Strategies,Unless otherwise specified, in this section “dist” will stand for the distance in the spherical metric in ?.
8#
發(fā)表于 2025-3-23 00:02:15 | 只看該作者
9#
發(fā)表于 2025-3-23 02:15:46 | 只看該作者
10#
發(fā)表于 2025-3-23 06:38:18 | 只看該作者
Computability versus Topological Properties of Julia Sets,To provide some intuition why the filled Julia set is computable even when the Julia set is not, we propose a “toy” example. As a first step, let us denote by.(θ,.) the closed wedge in the unit disc U around direction θ with width . at the base, which penetrates the disc to depth 1.2 (as shown in Figure 6.1(a)).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建平县| 浦城县| 巴中市| 武强县| 永城市| 改则县| 宣城市| 扶沟县| 嵊泗县| 宿迁市| 望都县| 棋牌| 修文县| 吉安县| 行唐县| 师宗县| 江门市| 乌海市| 阿坝县| 谷城县| 台中县| 罗江县| 抚顺县| 宁明县| 北川| 固始县| 若尔盖县| 乌鲁木齐县| 临沧市| 肇源县| 枝江市| 平罗县| 密云县| 奉化市| 邓州市| 嘉鱼县| 湖州市| 黎城县| 塔河县| 商洛市| 武功县|