找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[復(fù)制鏈接]
樓主: 平凡人
31#
發(fā)表于 2025-3-26 20:56:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:36:12 | 只看該作者
Trans-European Telecommunication Networks, features in the given representation of patterns, we would still be able to generate an abstraction that is as accurate in classification as the one with original feature set. In this chapter, we propose a lossy compression scheme. We demonstrate its efficiency and accuracy on practical datasets. T
33#
發(fā)表于 2025-3-27 06:42:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:08:20 | 只看該作者
35#
發(fā)表于 2025-3-27 17:21:30 | 只看該作者
Product Mix and Diversification,ucing the features include conventional feature selection and extraction methods, frequent item support-based methods, and optimal feature selection approaches. In earlier chapters, we discussed feature selection based on frequent items. In the present chapter, we combine a nonlossy compression sche
36#
發(fā)表于 2025-3-27 19:29:47 | 只看該作者
Product Mix and Diversification,tems. Big data is characterized by huge volumes of data that are not easily amenable for generating abstraction; variety of data formats, data frequency, types of data, and their integration; real or near-real time data processing for generating business or scientific value depending on nature of da
37#
發(fā)表于 2025-3-27 22:47:41 | 只看該作者
Compression Schemes for Mining Large Datasets978-1-4471-5607-9Series ISSN 2191-6586 Series E-ISSN 2191-6594
38#
發(fā)表于 2025-3-28 04:49:32 | 只看該作者
39#
發(fā)表于 2025-3-28 08:56:48 | 只看該作者
978-1-4471-7055-6Springer-Verlag London 2013
40#
發(fā)表于 2025-3-28 14:28:18 | 只看該作者
T. Ravindra Babu,M. Narasimha Murty,S.V. SubrahmanExamines all aspects of data abstraction generation using a least number of database scans.Discusses compressing data through novel lossy and non-lossy schemes.Proposes schemes for carrying out cluste
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 田阳县| 黔东| 江源县| 中阳县| 钟祥市| 佛教| 清徐县| 婺源县| 金山区| 浮梁县| 汨罗市| 武汉市| 沂水县| 林口县| 新沂市| 杨浦区| 延寿县| 大宁县| 洛隆县| 江油市| 汤阴县| 获嘉县| 吴旗县| 江津市| 利津县| 枣强县| 宁化县| 蓝田县| 沂源县| 宜城市| 东光县| 栖霞市| 汉川市| 衡阳市| 县级市| 河西区| 安平县| 疏附县| 仲巴县| 宕昌县|