找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[復制鏈接]
樓主: 平凡人
11#
發(fā)表于 2025-3-23 12:21:05 | 只看該作者
Big Data Abstraction Through Multiagent Systems,ow the divide-and-conquer approach of multiagent systems improves handling huge datasets. We propose four multiagent systems that can help generating abstraction with big data. We provide suggested reading and bibliographic notes. A list of references is provided in the end.
12#
發(fā)表于 2025-3-23 16:02:42 | 只看該作者
Introduction,lid representative subsets of original data and feature sets. All further data mining analysis can be based only on these representative subsets leading to significant reduction in storage space and time. Another important direction is to compress the data by some manner and operate in the compresse
13#
發(fā)表于 2025-3-23 19:02:37 | 只看該作者
Data Mining Paradigms, data mining. We elaborate some important data mining tasks such as clustering, classification, and association rule mining that are relevant to the content of the book. We discuss popular and representative algorithms of partitional and hierarchical data clustering. In classification, we discuss th
14#
發(fā)表于 2025-3-23 22:55:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:33:43 | 只看該作者
16#
發(fā)表于 2025-3-24 09:47:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:11 | 只看該作者
Optimal Dimensionality Reduction,ucing the features include conventional feature selection and extraction methods, frequent item support-based methods, and optimal feature selection approaches. In earlier chapters, we discussed feature selection based on frequent items. In the present chapter, we combine a nonlossy compression sche
19#
發(fā)表于 2025-3-24 22:47:12 | 只看該作者
Big Data Abstraction Through Multiagent Systems,tems. Big data is characterized by huge volumes of data that are not easily amenable for generating abstraction; variety of data formats, data frequency, types of data, and their integration; real or near-real time data processing for generating business or scientific value depending on nature of da
20#
發(fā)表于 2025-3-25 01:53:18 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 19:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新田县| 襄垣县| 巴彦县| 宁蒗| 偃师市| 郴州市| 新巴尔虎右旗| 任丘市| 霍城县| 松滋市| 油尖旺区| 得荣县| 垦利县| 关岭| 南通市| 班戈县| 五莲县| 巧家县| 伊宁县| 竹北市| 沂源县| 鹿邑县| 普兰县| 辛集市| 宜阳县| 博白县| 湖州市| 泸溪县| 年辖:市辖区| 阿巴嘎旗| 南雄市| 澄迈县| 邻水| 宁津县| 云浮市| 增城市| 罗源县| 兖州市| 蓬安县| 义马市| 肃宁县|