找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing for Distributed Systems; Giulio Coluccia,Chiara Ravazzi,Enrico Magli Book 2015 The Author(s) 2015 Compressed Sensing.Di

[復(fù)制鏈接]
查看: 11088|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:31:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Compressed Sensing for Distributed Systems
編輯Giulio Coluccia,Chiara Ravazzi,Enrico Magli
視頻videohttp://file.papertrans.cn/232/231980/231980.mp4
概述Maximizes reader insights into the state of the art in distributed compressed sensing.Contains supplementary material on the software that allows readers to readily test and compare reconstruction alg
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Compressed Sensing for Distributed Systems;  Giulio Coluccia,Chiara Ravazzi,Enrico Magli Book 2015 The Author(s) 2015 Compressed Sensing.Di
描述This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to the theoretical bounds. It presents and discusses various distributed reconstruction algorithms, summarizing the theoretical reconstruction guarantees and providing a comparat
出版日期Book 2015
關(guān)鍵詞Compressed Sensing; Distributed Optimization; Distributed Systems; Joint Reconstruction; Linear Inverse
版次1
doihttps://doi.org/10.1007/978-981-287-390-3
isbn_softcover978-981-287-389-7
isbn_ebook978-981-287-390-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s) 2015
The information of publication is updating

書目名稱Compressed Sensing for Distributed Systems影響因子(影響力)




書目名稱Compressed Sensing for Distributed Systems影響因子(影響力)學(xué)科排名




書目名稱Compressed Sensing for Distributed Systems網(wǎng)絡(luò)公開度




書目名稱Compressed Sensing for Distributed Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Compressed Sensing for Distributed Systems被引頻次




書目名稱Compressed Sensing for Distributed Systems被引頻次學(xué)科排名




書目名稱Compressed Sensing for Distributed Systems年度引用




書目名稱Compressed Sensing for Distributed Systems年度引用學(xué)科排名




書目名稱Compressed Sensing for Distributed Systems讀者反饋




書目名稱Compressed Sensing for Distributed Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:06:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:44 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:59 | 只看該作者
Distributed Compressed Sensing,orresponding recovery algorithm, which can be centralized or distributed; each solution entails specific advantages and drawbacks that are preliminarily discussed in this chapter, whereas a detailed description of the corresponding recovery algorithms is given in Chaps.?. and ..
5#
發(fā)表于 2025-3-22 10:44:15 | 只看該作者
Strategisches Technologiemanagement sparsity support as in (non-distributed) compressed sensing. Even if the derivation is performed in the large system regime, where signal and system parameters tend to infinity, numerical results show that the equations match simulations for parameter values of practical interest.
6#
發(fā)表于 2025-3-22 16:20:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:23 | 只看該作者
9#
發(fā)表于 2025-3-23 01:32:11 | 只看該作者
Distributed Compressed Sensing,he distributed framework in which multiple devices acquire multiple signals. In particular, we focus on two key problems related to the distributed setting. The former is the definition of sparsity models for an ensemble of signals, as opposed to just one signal. The second is the structure of the c
10#
發(fā)表于 2025-3-23 08:18:46 | 只看該作者
Rate-Distortion Theory of Distributed Compressed Sensing,nce in the rate-distortion sense of any distributed compressed sensing scheme is derived, under the constraint of high-rate quantization. Moreover, under this model we derive a closed-form expression of the rate gain achieved by taking into account the correlation of the sources at the receiver and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利川市| 溆浦县| 前郭尔| 浪卡子县| 平谷区| 奉贤区| 娄烦县| 萨迦县| 米脂县| 双流县| 肇源县| 乌鲁木齐县| 迁安市| 南召县| 上杭县| 汕头市| 通海县| 岫岩| 藁城市| 全椒县| 芜湖县| 内黄县| 星子县| 克山县| 泰顺县| 桦甸市| 长治县| 南通市| 封开县| 嵊州市| 秦安县| 綦江县| 黔西县| 孟州市| 琼结县| 新丰县| 麦盖提县| 林州市| 富川| 化州市| 屯昌县|