找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Composition Operators; and Classical Functi Joel H. Shapiro Textbook 1993 Springer Science+Business Media New York 1993 Complex analysis.De

[復(fù)制鏈接]
樓主: 故障
21#
發(fā)表于 2025-3-25 05:50:21 | 只看該作者
https://doi.org/10.1007/978-1-4612-0887-7Complex analysis; Derivative; Hilbert space; Schwarz lemma; compactness; differential equation
22#
發(fā)表于 2025-3-25 07:43:07 | 只看該作者
23#
發(fā)表于 2025-3-25 11:57:04 | 只看該作者
24#
發(fā)表于 2025-3-25 17:14:20 | 只看該作者
Compactness and Eigenfunctions,ing maps. Here we begin to study how compactness affects the . of a composition operator. The eigenfunction equation for a composition operator C. is called .and has been studied in one form or another since the late nineteenth century [Shr ‘71].
25#
發(fā)表于 2025-3-25 22:00:52 | 只看該作者
Compactness: General Case, abandon univalence, and attack the compactness problem for composition operators induced by arbitrary holomorphic self-maps of the disc. As you might guess, the solution involves not only the geometry of the inducing map’s image, but its “affinity” for each of the points in this image.
26#
發(fā)表于 2025-3-26 02:33:58 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:22 | 只看該作者
Composition Operators978-1-4612-0887-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
28#
發(fā)表于 2025-3-26 09:26:40 | 只看該作者
29#
發(fā)表于 2025-3-26 14:43:31 | 只看該作者
Statistische Gesamtheiten des Gleichgewichtsing maps. Here we begin to study how compactness affects the . of a composition operator. The eigenfunction equation for a composition operator C. is called .and has been studied in one form or another since the late nineteenth century [Shr ‘71].
30#
發(fā)表于 2025-3-26 17:55:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
当涂县| 民乐县| 拉萨市| 库伦旗| 金门县| 邵阳县| 宜昌市| 巫溪县| 崇阳县| 辽中县| 西林县| 法库县| 阳新县| 化隆| 松阳县| 桓台县| 三台县| 刚察县| 东台市| 西林县| 织金县| 桑日县| 新丰县| 星座| 台东县| 桃园市| 沧源| 庆城县| 营山县| 潜江市| 松原市| 平谷区| 兴海县| 周口市| 盘锦市| 大宁县| 汨罗市| 敦煌市| 乌拉特前旗| 玉屏| 巫山县|