找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Composing Fisher Kernels from Deep Neural Models; A Practitioner‘s App Tayyaba Azim,Sarah Ahmed Book 2018 The Author(s), under exclusive li

[復(fù)制鏈接]
查看: 20824|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:09:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Composing Fisher Kernels from Deep Neural Models
副標(biāo)題A Practitioner‘s App
編輯Tayyaba Azim,Sarah Ahmed
視頻videohttp://file.papertrans.cn/232/231804/231804.mp4
概述Presents a step-by-step approach to deriving a kernel from any probabilistic model belonging to the family of deep networks.Demonstrates the use of feature compression and selection techniques for red
叢書(shū)名稱SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Composing Fisher Kernels from Deep Neural Models; A Practitioner‘s App Tayyaba Azim,Sarah Ahmed Book 2018 The Author(s), under exclusive li
描述This book shows machine learning enthusiasts and practitioners how to get the best of both worlds by deriving Fisher kernels from deep learning models. In addition, the book shares insight on how to store and retrieve large-dimensional Fisher vectors using feature selection and compression techniques. Feature selection and feature compression are two of the most popular off-the-shelf methods for reducing data’s high-dimensional memory footprint and thus making it suitable for large-scale visual retrieval and classification. Kernel methods long remained the .de facto. standard for solving large-scale object classification tasks using low-level features, until the revival of deep models in 2006. Later, they made a comeback with improved Fisher vectors in 2010. However, their supremacy was always challenged by various versions of deep models, now considered to be the state of the art for solving various machine learning and computer vision tasks. Although the two research paradigms differ significantly, the excellent performance of Fisher kernels on the Image Net large-scale object classification dataset has caught the attention of numerous kernel practitioners, and many have drawn pa
出版日期Book 2018
關(guān)鍵詞Deep Models; Fisher Vectors; Large Scale Information Retrieval; Feature Compression Techniques; Feature
版次1
doihttps://doi.org/10.1007/978-3-319-98524-4
isbn_softcover978-3-319-98523-7
isbn_ebook978-3-319-98524-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive licence to Springer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱Composing Fisher Kernels from Deep Neural Models影響因子(影響力)




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models被引頻次




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models被引頻次學(xué)科排名




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models年度引用




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models年度引用學(xué)科排名




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models讀者反饋




書(shū)目名稱Composing Fisher Kernels from Deep Neural Models讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:01 | 只看該作者
Regressions- und Korrelationsanalyse,n of kernel methods and the heuristics and methods that have helped kernel methods evolve over the past many years for solving the challenges faced by current machine learning practitioners and applied scientists.
板凳
發(fā)表于 2025-3-22 04:03:58 | 只看該作者
Kernel Based Learning: A Pragmatic Approach in the Face of New Challenges,n of kernel methods and the heuristics and methods that have helped kernel methods evolve over the past many years for solving the challenges faced by current machine learning practitioners and applied scientists.
地板
發(fā)表于 2025-3-22 06:20:46 | 只看該作者
2191-5768 use of feature compression and selection techniques for redThis book shows machine learning enthusiasts and practitioners how to get the best of both worlds by deriving Fisher kernels from deep learning models. In addition, the book shares insight on how to store and retrieve large-dimensional Fish
5#
發(fā)表于 2025-3-22 12:25:45 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:04 | 只看該作者
Fundamentals of Fisher Kernels, was filled by Tommy Jaakola through the introduction of . kernels in 1998 and since then it has played a key role in solving problems from computational biology, computer vision and machine learning. We introduce this concept here and show how to compute Fisher vector encodings from deep models using a toy example in MATLAB.
7#
發(fā)表于 2025-3-22 20:22:32 | 只看該作者
8#
發(fā)表于 2025-3-23 00:05:24 | 只看該作者
9#
發(fā)表于 2025-3-23 03:28:29 | 只看該作者
Die Technik der praktischen Statistik,chniques discussed in this book. We have shared comparative analysis of the resources in tabular form so that users could pick the tools keeping in view their programming expertise, software/hardware dependencies and productivity goals.
10#
發(fā)表于 2025-3-23 07:17:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠东县| 沐川县| 西充县| 宜昌市| 定安县| 鲜城| 惠来县| 乌拉特后旗| 慈利县| 讷河市| 玉林市| 邢台市| 新干县| 龙南县| 吉安县| 孟津县| 海原县| 曲靖市| 西乌| 保靖县| 东海县| 巩留县| 东台市| 三河市| 廉江市| 敦煌市| 阜康市| 南雄市| 镇宁| 天全县| 宁陵县| 余姚市| 乌拉特前旗| 嘉祥县| 固安县| 大庆市| 隆回县| 紫云| 鹤岗市| 阜阳市| 建阳市|