找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Diversity; Eiichi Ryoku Nakamura,Kiyoshi Kudo,Yoichi Tamagawa Conference proceedings 1997 Springer-Verlag Tokyo 1997 applie

[復(fù)制鏈接]
樓主: 聯(lián)系
11#
發(fā)表于 2025-3-23 09:50:05 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:10:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:56 | 只看該作者
Pattern Recalling Property of Neural Network Modules Integrated by Chaoswork modules can be integrated without controller. In our two-body neural network model, the chaotic behavior plays the role of a mechanism that integrates network modules. Integration of modules was realized by timeshared pattern recalling. This result provides another viewpoint of chaos in neural network model.
15#
發(fā)表于 2025-3-24 03:55:36 | 只看該作者
A complexity measure of the Internetences, such as periodic, random, mixed, cellular automata generated and logistic map generated sequences, to compare with that of data traffic on the Internet. As a result, we find, the measure of data traffic is larger than those produced by other artificial sequences.
16#
發(fā)表于 2025-3-24 07:32:37 | 只看該作者
17#
發(fā)表于 2025-3-24 11:03:17 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:00 | 只看該作者
On the generation and dissipation of coherent structure in two-dimensional vorticeson in this paper is to discuss the restricted subject of two-dimensional vortex motion. I deal with the dynamics of a system of point vortices in two-dimensional flow field and discuss a few points about generation and dissipation of coherent structure in these system.
19#
發(fā)表于 2025-3-24 22:18:40 | 只看該作者
Hamiltonian dynamics and statistics of relaxationsded by Hamiltonian equations of motion, which are numerically integrated. Anomalously slow relaxation appears near the critical point for a statistical quantity. The statistic is produced by taking average over initial conditions.
20#
發(fā)表于 2025-3-25 00:23:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临江市| 靖江市| 洛隆县| 巴中市| 镇赉县| 绍兴县| 罗山县| 柏乡县| 化隆| 莎车县| 芜湖县| 肃宁县| 遵化市| 左贡县| 正蓝旗| 阳城县| 汝城县| 休宁县| 台南县| 格尔木市| 纳雍县| 吉木乃县| 吐鲁番市| 武功县| 二连浩特市| 合川市| 汤原县| 亚东县| 尤溪县| 绥宁县| 东乌珠穆沁旗| 呈贡县| 松滋市| 广河县| 通河县| 龙门县| 敦煌市| 云林县| 张掖市| 祁连县| 永济市|