找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Approximation; In Memory of Ker-I K Ding-Zhu Du,Jie Wang Book 2020 Springer Nature Switzerland AG 2020 real functions.comple

[復(fù)制鏈接]
樓主: HAVEN
21#
發(fā)表于 2025-3-25 03:24:55 | 只看該作者
22#
發(fā)表于 2025-3-25 08:39:06 | 只看該作者
Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity,rd to determine the time-bounded Kolmogorov complexity of a given string. This problem is closely connected with the Minimum Circuit Size Problem (.), which is central to several contemporary investigations in computational complexity theory.
23#
發(fā)表于 2025-3-25 13:01:11 | 只看該作者
Sequential Location Game on Continuous Directional Star Networks,ation to maximize its payoff. We establish a universal lower bound for payoff to a player under any HSE outcome. The lower bound is then strengthened with better estimations, and some HSE outcomes are explicitly presented, provided that the number of players and the network parameters satisfy certain relations.
24#
發(fā)表于 2025-3-25 15:59:16 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:07 | 只看該作者
26#
發(fā)表于 2025-3-26 03:18:15 | 只看該作者
27#
發(fā)表于 2025-3-26 05:57:53 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:52:39 | 只看該作者
Hugo Illous,Matthieu Lemerre,Xavier Rival a target which is unknown to the robots. At the beginning all robots stay at the origin and then they can start to search with maximum speed 1. Unfortunately, . of them are ., which means that they may ignore the target when passing it or lie that they find the target. Therefore, the target is foun
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宕昌县| 含山县| 浦城县| 涪陵区| 乐业县| 黄冈市| 贞丰县| 田阳县| 福鼎市| 田林县| 奉新县| 枣阳市| 南昌市| 内丘县| 越西县| 全南县| 孟州市| 普陀区| 咸宁市| 白河县| 滁州市| 天峨县| 隆子县| 房产| 阳原县| 广德县| 登封市| 徐汇区| 望江县| 枣强县| 四川省| 甘洛县| 威海市| 登封市| 合肥市| 呼玛县| 金秀| 苍溪县| 明溪县| 贵德县| 内乡县|