找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Approximation; Combinatorial Optimi Giorgio Ausiello,Alberto Marchetti-Spaccamela,Vigg Textbook 1999 Springer-Verlag Berlin

[復制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 06:03:01 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:51 | 只看該作者
23#
發(fā)表于 2025-3-25 13:28:56 | 只看該作者
24#
發(fā)表于 2025-3-25 17:39:44 | 只看該作者
Heuristic methods,gorithms with a guaranteed behaviour, where such a guarantee refers both to the quality of the returned solution (in terms of either worst case or expected performance ratio) and to the running time (polynomial either in the worst or in the average case).
25#
發(fā)表于 2025-3-25 20:54:31 | 只看該作者
The Regime for Securities Regulation,ant to solve by computer may have quite varying characteristics. In general, we are able to express our problem in terms of some .? ., where I is the set of . and . is the set of .. As an alternative view, we can also consider a predicate .(x,y) which is true if and only if (x,y) ∈ .. If we want to
26#
發(fā)表于 2025-3-26 01:16:25 | 只看該作者
https://doi.org/10.1057/9781403981011unless P = N.. Therefore, if we want to solve an N.-hard optimiza-tion problem by means of an efficient (polynomial-time) algorithm, we have to accept the fact that the algorithm does not always return an optimal solution but rather an approximate one. In Chap. 2, we have seen that, in some cases, s
27#
發(fā)表于 2025-3-26 05:13:52 | 只看該作者
Paul Kingston,Marie-Joelle Zahartant factor. We also saw examples of N. problems for which no approximation algorithm exists (unless P=N.) and examples of N. problems for which an approximation algorithm but no approxima-tion scheme exists (unless P=N.). To deal with these two latter kinds of problem, in this chapter we will relax
28#
發(fā)表于 2025-3-26 11:45:15 | 只看該作者
J. David Alvis,Jason R. Jividen many problems arising in different areas: taking into account the scope of this book, however, we will limit ourselves to considering randomized approximation algorithms for N.-hard optimization problems.
29#
發(fā)表于 2025-3-26 16:12:51 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:24 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐津县| 保德县| 泽普县| 闵行区| 同德县| 离岛区| 宜良县| 定结县| 松滋市| 封丘县| 邢台市| 洛阳市| 冀州市| 桃江县| 内丘县| 卢氏县| 香港| 和硕县| 中山市| 松江区| 陆川县| 元氏县| 中方县| 泸西县| 德惠市| 都昌县| 华亭县| 泗洪县| 内丘县| 晋城| 阿坝县| 辽中县| 齐河县| 小金县| 自治县| 宁武县| 宁夏| 邵阳市| 紫金县| 文山县| 子长县|