找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Complexity Theory of Real Functions; Ker-I Ko Book 1991 Birkh?user Boston 1991 Approximation.NP-completeness.Notation.algorithm.algorithms

[復(fù)制鏈接]
樓主: minuscule
41#
發(fā)表于 2025-3-28 18:13:31 | 只看該作者
Introduction,orial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a
42#
發(fā)表于 2025-3-28 20:27:37 | 只看該作者
Maximization,tion . on [0,1]. It is to be shown that these maximum values axe exactly the real numbers which have a (general) left cut in . (called left . real numbers). For two-dimensional, polynomial-time computable functions . on [0, l]., the maximum functions .) = max{., .)| 0 ≤ . ≤ 1} coincide with . real f
43#
發(fā)表于 2025-3-29 00:29:48 | 只看該作者
44#
發(fā)表于 2025-3-29 06:16:34 | 只看該作者
Ordinary Differentiation Equations,on the solution . (for example, by the use of the Euler method). The main result of this chapter proves that polynomial space is also a lower bound for the solution . of equation (7.1) if the function . is polynomial-time computable and satisfies a weak form of local Lipschitz condition in the neigh
45#
發(fā)表于 2025-3-29 09:24:03 | 只看該作者
46#
發(fā)表于 2025-3-29 14:27:00 | 只看該作者
Book 1991ng combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 沈丘县| 寿阳县| 新余市| 鄂尔多斯市| 宁乡县| 永靖县| 大足县| 昌江| 顺义区| 沙湾县| 安平县| 安塞县| 拜城县| 巴南区| 舒兰市| 特克斯县| 铜陵市| 天水市| 伊宁县| 灵川县| 潞城市| 巫山县| 博客| 建阳市| 祁连县| 诏安县| 塔城市| 伊春市| 潞西市| 东乡县| 怀仁县| 新泰市| 屏山县| 迁安市| 嵊州市| 新竹县| 麦盖提县| 安宁市| 阿拉尔市| 昔阳县|