找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity Theory Retrospective; In Honor of Juris Ha Alan L. Selman Book 1990 Springer-Verlag New York Inc. 1990 Counting.algorithm.algori

[復(fù)制鏈接]
樓主: Spring
21#
發(fā)表于 2025-3-25 06:00:52 | 只看該作者
22#
發(fā)表于 2025-3-25 10:59:31 | 只看該作者
Introduction,I can begin no more eloquently than by quoting the master himself:
23#
發(fā)表于 2025-3-25 12:44:53 | 只看該作者
Juris Hartmanis: The Beginnings of Computational Complexity,areer.. This is a very appropriate tribute since complexity theory is now approximately 25 years old and Juris has been a prime mover in the field throughout its history. I was privileged to have worked with Hartmanis during the early period of his complexity research, and I am grateful for this opp
24#
發(fā)表于 2025-3-25 18:32:26 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:27:38 | 只看該作者
Describing Graphs: A First-Order Approach to Graph Canonization, unordered graphs?” We consider the languages .. consisting of first-order logic restricted to . variables and .. consisting of .. plus “counting quantifiers”. We give efficient canonization algorithms for graphs characterized by .. or ... It follows from known results that all trees and almost all
27#
發(fā)表于 2025-3-26 08:00:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:54 | 只看該作者
The Structure of Complete Degrees,s as diverse as combinatorics, logic, and operations research turn out to be NP-complete and thus computationally equivalent in the sense discussed in the next paragraph. PSPACE-completeness, NEXP-completeness, and completeness for other complexity classes have likewise been used to show commonaliti
29#
發(fā)表于 2025-3-26 16:29:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 01:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇坪县| 汝州市| 鄂尔多斯市| 新巴尔虎右旗| 托克逊县| 尼木县| 平武县| 廉江市| 定陶县| 南昌市| 福贡县| 扬州市| 浙江省| 广平县| 湟中县| 苍溪县| 阜平县| 开远市| 内乡县| 东丽区| 合江县| 绥中县| 宣威市| 祁门县| 合水县| 济南市| 资溪县| 奈曼旗| 渝北区| 巨鹿县| 邵东县| 望谟县| 中西区| 延津县| 天全县| 汉源县| 清镇市| 新和县| 巴彦淖尔市| 出国| 如皋市|