找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex and Chaotic Nonlinear Dynamics; Advances in Economic Thierry Vialar Book 2009 Springer-Verlag Berlin Heidelberg 2009 Chaotic, Compl

[復制鏈接]
查看: 31137|回復: 37
樓主
發(fā)表于 2025-3-21 17:49:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex and Chaotic Nonlinear Dynamics
副標題Advances in Economic
編輯Thierry Vialar
視頻videohttp://file.papertrans.cn/232/231610/231610.mp4
概述Comprehensive and interdisciplinary set of knowledge on complex dynamics.Numerous figures and simulations illustrate the subject matter.Short presentation of mathematical fundamentals in appendix
圖書封面Titlebook: Complex and Chaotic Nonlinear Dynamics; Advances in Economic Thierry Vialar Book 2009 Springer-Verlag Berlin Heidelberg 2009 Chaotic, Compl
描述.Complex dynamics constitute a growing and increasingly important area as they offer a strong potential to explain and formalize natural, physical, financial and economic phenomena. ..This book pursues the ambitious goal to bring together an extensive body of knowledge regarding complex dynamics from various academic disciplines. Beyond its focus on economics and finance, including for instance the evolution of macroeconomic growth models towards nonlinear structures as well as signal processing applications to stock markets, fundamental parts of the book are devoted to the use of nonlinear dynamics in mathematics, statistics, signal theory and processing...Numerous examples and applications, almost 700 illustrations and numerical simulations based on the use of Matlab make the book an essential reference for researchers and students from many different disciplines who are interested in the nonlinear field. An appendix recapitulates the basic mathematical concepts required to use the book..
出版日期Book 2009
關鍵詞Chaotic, Complex Dynamics; Hyperbolicity; MATLAB; Nonlinear; STATISTICA; Simulation; Singularity; Waveforms
版次1
doihttps://doi.org/10.1007/978-3-540-85978-9
isbn_softcover978-3-642-09947-2
isbn_ebook978-3-540-85978-9
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Complex and Chaotic Nonlinear Dynamics影響因子(影響力)




書目名稱Complex and Chaotic Nonlinear Dynamics影響因子(影響力)學科排名




書目名稱Complex and Chaotic Nonlinear Dynamics網絡公開度




書目名稱Complex and Chaotic Nonlinear Dynamics網絡公開度學科排名




書目名稱Complex and Chaotic Nonlinear Dynamics被引頻次




書目名稱Complex and Chaotic Nonlinear Dynamics被引頻次學科排名




書目名稱Complex and Chaotic Nonlinear Dynamics年度引用




書目名稱Complex and Chaotic Nonlinear Dynamics年度引用學科排名




書目名稱Complex and Chaotic Nonlinear Dynamics讀者反饋




書目名稱Complex and Chaotic Nonlinear Dynamics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:25:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:57:29 | 只看該作者
6#
發(fā)表于 2025-3-22 13:23:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:53 | 只看該作者
https://doi.org/10.1057/978-1-137-52719-6ann in 1931. . (on surfaces of constant energy of the phase space) . In 1931, the Birkhoff theorem established a rigorous general framework from which the Ergodic theory has been developed with the purpose to study the asymptotic behavior of a dynamical system by means of its invariant measurements
8#
發(fā)表于 2025-3-22 21:17:40 | 只看該作者
Tommy Shih,Alexandra Waluszewskiurier is an icon whose influence is fundamental still today. In 1822, Fourier1 in his work entitled “Analytical Theory of Heat”, explained the way in which the .. In brief, it stated that any periodic function can be expressed as a sum of sinusoids, i.e. sines and cosine of different frequencies: Th
9#
發(fā)表于 2025-3-23 04:06:07 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:23 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 20:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
华安县| 德清县| 巴彦县| 于田县| 安乡县| 财经| 盱眙县| 洛川县| 漳平市| 乡城县| 屯门区| 铜川市| 筠连县| 宁国市| 新绛县| 四平市| 渭源县| 凤庆县| 弋阳县| 安仁县| 黄大仙区| 达日县| 新化县| 任丘市| 昭平县| 宁津县| 合水县| 讷河市| 永新县| 深圳市| 新和县| 定襄县| 炎陵县| 台中县| 延川县| 东源县| 抚松县| 平湖市| 梨树县| 峨眉山市| 泾川县|