找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Quantum Groups and Representation Theory; Christian Voigt,Robert Yuncken Book 2020 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 9412|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:35:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Complex Semisimple Quantum Groups and Representation Theory
編輯Christian Voigt,Robert Yuncken
視頻videohttp://file.papertrans.cn/232/231534/231534.mp4
概述Provides a comprehensive, accessible and self-contained introduction to the theory of quantized universal enveloping algebras and their associated quantized semisimple Lie groups.Presents complete pro
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Complex Semisimple Quantum Groups and Representation Theory;  Christian Voigt,Robert Yuncken Book 2020 The Editor(s) (if applicable) and Th
描述.This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group...?The main components are:..-?? a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism,..-?? the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals,..-?? algebraic representation theory in terms of category O, and..-?? analytic representationtheory of quantized complex semisimple groups...?Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups..
出版日期Book 2020
關(guān)鍵詞Category O; Drinfeld Double; Harish-Chandra Modules; Quantized Enveloping Algebras; Quantum Groups
版次1
doihttps://doi.org/10.1007/978-3-030-52463-0
isbn_softcover978-3-030-52462-3
isbn_ebook978-3-030-52463-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Complex Semisimple Quantum Groups and Representation Theory影響因子(影響力)




書目名稱Complex Semisimple Quantum Groups and Representation Theory影響因子(影響力)學(xué)科排名




書目名稱Complex Semisimple Quantum Groups and Representation Theory網(wǎng)絡(luò)公開度




書目名稱Complex Semisimple Quantum Groups and Representation Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Semisimple Quantum Groups and Representation Theory被引頻次




書目名稱Complex Semisimple Quantum Groups and Representation Theory被引頻次學(xué)科排名




書目名稱Complex Semisimple Quantum Groups and Representation Theory年度引用




書目名稱Complex Semisimple Quantum Groups and Representation Theory年度引用學(xué)科排名




書目名稱Complex Semisimple Quantum Groups and Representation Theory讀者反饋




書目名稱Complex Semisimple Quantum Groups and Representation Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:16:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:47:49 | 只看該作者
5#
發(fā)表于 2025-3-22 10:04:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:37:41 | 只看該作者
7#
發(fā)表于 2025-3-22 18:32:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:08 | 只看該作者
Dirk Vallée,Barbara Engel,Walter Vogtr-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.
9#
發(fā)表于 2025-3-23 02:46:18 | 只看該作者
10#
發(fā)表于 2025-3-23 05:55:34 | 只看該作者
Category ,,r-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江山市| 罗平县| 景谷| 崇礼县| 阳曲县| 巴彦淖尔市| 临猗县| 仁怀市| 荔波县| 韶山市| 福清市| 华容县| 稻城县| 沾化县| 樟树市| 清原| 宁武县| 崇明县| 乡城县| 万山特区| 成武县| 舞钢市| 凤山县| 万宁市| 瑞金市| 信丰县| 包头市| 利辛县| 乌审旗| 固原市| 米易县| 南乐县| 霸州市| 陇西县| 东兴市| 肇东市| 林芝县| 池州市| 洱源县| 资溪县| 巴塘县|