找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 13:36:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:21:56 | 只看該作者
,Anlagen für den ruhenden Kraftverkehr,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
13#
發(fā)表于 2025-3-23 20:43:15 | 只看該作者
https://doi.org/10.1007/978-3-662-25020-4This chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
14#
發(fā)表于 2025-3-24 01:31:01 | 只看該作者
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Sees. 7 and 8 we assume that . has characteristic 0. The Lie bracket of . and . is denoted by [.], and the map . → [.] by ad ..
15#
發(fā)表于 2025-3-24 05:58:02 | 只看該作者
Semisimple Lie Algebras (General Theorems),In this chapter, the base field . is a field of characteristic zero.The Lie algebras and vector spaces considered have finite dimension over ..
16#
發(fā)表于 2025-3-24 10:31:31 | 只看該作者
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
17#
發(fā)表于 2025-3-24 11:25:10 | 只看該作者
The Algebra , and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers.
18#
發(fā)表于 2025-3-24 16:01:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:37 | 只看該作者
Structure of Semisimple Lie Algebras,Throughout this chapter, .denotes a ., and . a . of . (cf. Chap. III).
20#
發(fā)表于 2025-3-25 02:30:43 | 只看該作者
Linear Representations of Semisimple Lie Algebras,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 庄河市| 淮安市| 福海县| 江陵县| 余干县| 阿拉善右旗| 仁寿县| 泰宁县| 荥阳市| 滁州市| 南和县| 旬阳县| 丰都县| 屏南县| 临猗县| 攀枝花市| 琼海市| 满城县| 清涧县| 烟台市| 辛集市| 小金县| 乌兰察布市| 西丰县| 巫溪县| 灵武市| 湖口县| 沈丘县| 婺源县| 衡东县| 麻江县| 唐山市| 罗源县| 梁平县| 中江县| 榆中县| 沁源县| 成武县| 衡东县| 平阴县|