找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 13:36:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:21:56 | 只看該作者
,Anlagen für den ruhenden Kraftverkehr,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
13#
發(fā)表于 2025-3-23 20:43:15 | 只看該作者
https://doi.org/10.1007/978-3-662-25020-4This chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
14#
發(fā)表于 2025-3-24 01:31:01 | 只看該作者
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Sees. 7 and 8 we assume that . has characteristic 0. The Lie bracket of . and . is denoted by [.], and the map . → [.] by ad ..
15#
發(fā)表于 2025-3-24 05:58:02 | 只看該作者
Semisimple Lie Algebras (General Theorems),In this chapter, the base field . is a field of characteristic zero.The Lie algebras and vector spaces considered have finite dimension over ..
16#
發(fā)表于 2025-3-24 10:31:31 | 只看該作者
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
17#
發(fā)表于 2025-3-24 11:25:10 | 只看該作者
The Algebra , and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers.
18#
發(fā)表于 2025-3-24 16:01:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:37 | 只看該作者
Structure of Semisimple Lie Algebras,Throughout this chapter, .denotes a ., and . a . of . (cf. Chap. III).
20#
發(fā)表于 2025-3-25 02:30:43 | 只看該作者
Linear Representations of Semisimple Lie Algebras,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文水县| 枣庄市| 修武县| 余庆县| 周至县| 诸暨市| 即墨市| 汝州市| 永仁县| 津市市| 长宁县| 台中市| 新兴县| 筠连县| 武强县| 化州市| 西充县| 麻江县| 将乐县| 拉萨市| 莱州市| 西安市| 勐海县| 富裕县| 万宁市| 南涧| 宾川县| 冷水江市| 香港 | 遂昌县| 广安市| 汉中市| 长武县| 阳原县| 蒙阴县| 渭南市| 岱山县| 濮阳市| 井陉县| 梨树县| 镇远县|