找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers from A to ...Z; Titu Andreescu,Dorin Andrica Textbook 20051st edition Birkh?user Boston 2005 Grad.algebra.geometry.ksa.num

[復(fù)制鏈接]
樓主: clannish
11#
發(fā)表于 2025-3-23 12:42:47 | 只看該作者
Christa Reicher,Anne S?fker-RienietsSuppose that the complex numbers . and . have the geometric images . and ..
12#
發(fā)表于 2025-3-23 15:19:10 | 只看該作者
Christa Reicher,Anne S?fker-RienietsThe concept of the scalar product of two vectors is well known. In what follows we will introduce this concept for complex numbers. We will see that in many situations use of this product simplifies the solution to the problem considerably. Let a and b be two complex numbers.
13#
發(fā)表于 2025-3-23 19:56:13 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:49 | 只看該作者
Complex Numbers in Algebraic Form,In what follows we assume that the definition and basic properties of the set of real numbers R are known.
15#
發(fā)表于 2025-3-24 05:14:08 | 只看該作者
Complex Numbers in Trigonometric Form,Let us consider a coordinate plane and a point .(., .) that is not the origin.
16#
發(fā)表于 2025-3-24 10:26:52 | 只看該作者
17#
發(fā)表于 2025-3-24 13:51:25 | 只看該作者
18#
發(fā)表于 2025-3-24 15:44:31 | 只看該作者
Answers, Hints and Solutions to Proposed Problems,In what follows answers and solutions are presented to problems posed in previous chapters. We have preserved the title of the subsection containing the problem and the number of the proposed problem.
19#
發(fā)表于 2025-3-24 21:40:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 新乡县| 涿州市| 胶南市| 武汉市| 琼中| 绵竹市| 长顺县| 宁阳县| 扬中市| 习水县| 禄丰县| 民丰县| 阳原县| 海阳市| 西吉县| 平定县| 五大连池市| 山丹县| 牡丹江市| 滁州市| 彭山县| 黔西| 西乡县| 通化县| 策勒县| 益阳市| 嘉荫县| 杨浦区| 吴旗县| 互助| 毕节市| 宜州市| 临夏县| 娱乐| 阳朔县| 喀什市| 应城市| 麻阳| 师宗县| 梅州市|