找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers; An Introduction for J?rg Kortemeyer Book 2021 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021 Number Ran

[復(fù)制鏈接]
樓主: HAND
11#
發(fā)表于 2025-3-23 10:06:56 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,ll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
12#
發(fā)表于 2025-3-23 14:52:20 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:57 | 只看該作者
Romanischer Bereich, Frankreichll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
14#
發(fā)表于 2025-3-24 01:50:23 | 只看該作者
15#
發(fā)表于 2025-3-24 06:17:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:48 | 只看該作者
Book 2021on by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors..
17#
發(fā)表于 2025-3-24 11:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:34 | 只看該作者
19#
發(fā)表于 2025-3-24 20:43:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:53 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,he previous chapter, complex numbers are an extension of real numbers. In this chapter, you will see that a complex number is an ordered pair of real numbers. This chapter introduces the first representation of complex numbers, which is especially good for addition and subtraction. As explained in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰县| 绥江县| 罗源县| 河北省| 嘉善县| 江西省| 通州市| 突泉县| 新竹县| 望江县| 都安| 浠水县| 揭西县| 昌黎县| 彝良县| 彭水| 南宫市| 兴安县| 贞丰县| 土默特右旗| 中阳县| 通辽市| 保康县| 从江县| 宣威市| 庆城县| 双鸭山市| 黎城县| 兴安县| 饶平县| 石棉县| 雅安市| 南川市| 自贡市| 清涧县| 通海县| 思茅市| 犍为县| 镇远县| 凌云县| 曲水县|