找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers; An Introduction for J?rg Kortemeyer Book 2021 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021 Number Ran

[復(fù)制鏈接]
樓主: HAND
11#
發(fā)表于 2025-3-23 10:06:56 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,ll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
12#
發(fā)表于 2025-3-23 14:52:20 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:57 | 只看該作者
Romanischer Bereich, Frankreichll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
14#
發(fā)表于 2025-3-24 01:50:23 | 只看該作者
15#
發(fā)表于 2025-3-24 06:17:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:48 | 只看該作者
Book 2021on by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors..
17#
發(fā)表于 2025-3-24 11:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:34 | 只看該作者
19#
發(fā)表于 2025-3-24 20:43:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:53 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,he previous chapter, complex numbers are an extension of real numbers. In this chapter, you will see that a complex number is an ordered pair of real numbers. This chapter introduces the first representation of complex numbers, which is especially good for addition and subtraction. As explained in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广西| 龙南县| 汨罗市| 申扎县| 勐海县| 邯郸县| 尼玛县| 前郭尔| 宁德市| 连平县| 桃江县| 孝昌县| 葫芦岛市| 辽源市| 连云港市| 沁源县| 玉田县| 商南县| 中山市| 喀什市| 高尔夫| 德江县| 通许县| 碌曲县| 湘潭县| 额尔古纳市| 陆良县| 吉林省| 莱芜市| 惠来县| 夏河县| 民权县| 廊坊市| 安泽县| 浑源县| 台中县| 寻甸| 宁阳县| 宣恩县| 富顺县| 大厂|