找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Non-K?hler Geometry; Cetraro, Italy 2018 S?awomir Dinew,Sebastien Picard,Alberto Verjovsky, Book 2019 Springer Nature Switzerland A

[復制鏈接]
查看: 44601|回復: 35
樓主
發(fā)表于 2025-3-21 20:09:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Non-K?hler Geometry
副標題Cetraro, Italy 2018
編輯S?awomir Dinew,Sebastien Picard,Alberto Verjovsky,
視頻videohttp://file.papertrans.cn/232/231512/231512.mp4
概述Presents surveys from leading experts in the field of complex geometry.Provides an up-to-date overview of research topics in the field.Provides an excellent introduction to the field, aimed at a wide
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Complex Non-K?hler Geometry; Cetraro, Italy 2018 S?awomir Dinew,Sebastien Picard,Alberto Verjovsky, Book 2019 Springer Nature Switzerland A
描述.Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds.? The school consisted of four courses, focusing on both the construction of non-K?hler manifolds and the understanding of a possible classification of complex non-K?hler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact K?hler manifolds, respectively. The courses by Sebastien Picard and S?awomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-K?hler geometry.?.
出版日期Book 2019
關(guān)鍵詞Anomaly Flow; LVMB Manifold; Non-K?hler Complex Manifold; Non-K?hlerian Compact Complex Surface; Pluripo
版次1
doihttps://doi.org/10.1007/978-3-030-25883-2
isbn_softcover978-3-030-25882-5
isbn_ebook978-3-030-25883-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Complex Non-K?hler Geometry影響因子(影響力)




書目名稱Complex Non-K?hler Geometry影響因子(影響力)學科排名




書目名稱Complex Non-K?hler Geometry網(wǎng)絡(luò)公開度




書目名稱Complex Non-K?hler Geometry網(wǎng)絡(luò)公開度學科排名




書目名稱Complex Non-K?hler Geometry被引頻次




書目名稱Complex Non-K?hler Geometry被引頻次學科排名




書目名稱Complex Non-K?hler Geometry年度引用




書目名稱Complex Non-K?hler Geometry年度引用學科排名




書目名稱Complex Non-K?hler Geometry讀者反饋




書目名稱Complex Non-K?hler Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:10 | 只看該作者
Ulrike Fettke,Mona Bergmann,Elisabeth WackerVII surface. We included an Appendix in which we introduce several fundamental objects in non-K?hlerian complex geometry (the Picard group of a compact complex manifold, the Gauduchon degree, the Kobayashi-Hitchin correspondence for line bundles, unitary flat line bundles), and we prove basic properties of these objects.
板凳
發(fā)表于 2025-3-22 04:21:57 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:48 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:50 | 只看該作者
Book 2019hler manifolds, respectively. The courses by Sebastien Picard and S?awomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-K?hler geometry.?.
6#
發(fā)表于 2025-3-22 15:19:13 | 只看該作者
0075-8434 n analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-K?hler geometry.?.978-3-030-25882-5978-3-030-25883-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
7#
發(fā)表于 2025-3-22 20:11:04 | 只看該作者
Eva Brauer,Tamara Dangelmaier,Daniela Hunoldic. Section 2.3 introduces the Anomaly flow in the simplest case of zero slope, where the flow can be understood as a deformation path connecting non-K?hler to K?hler geometry. Section 2.4 concerns the Anomaly flow with . corrections, which is motivated from theoretical physics and canonical metrics
8#
發(fā)表于 2025-3-22 23:16:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:11:38 | 只看該作者
https://doi.org/10.1007/978-3-030-25883-2Anomaly Flow; LVMB Manifold; Non-K?hler Complex Manifold; Non-K?hlerian Compact Complex Surface; Pluripo
10#
發(fā)表于 2025-3-23 09:12:06 | 只看該作者
978-3-030-25882-5Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
德昌县| 遂川县| 巴彦淖尔市| 奉化市| 河东区| 项城市| 余庆县| 柳河县| 神木县| 临朐县| 都兰县| 揭阳市| 元江| 凤台县| 开封市| 扶风县| 论坛| 峡江县| 通州区| 卓资县| 绥滨县| 永修县| 无为县| 郴州市| 临沭县| 博兴县| 长汀县| 玉树县| 陕西省| 株洲县| 嵊泗县| 兴山县| 甘洛县| 桂林市| 小金县| 罗源县| 南召县| 泰宁县| 吴旗县| 沁源县| 桦南县|