找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Multiplication; Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli

[復制鏈接]
樓主: thyroidectomy
21#
發(fā)表于 2025-3-25 07:00:59 | 只看該作者
22#
發(fā)表于 2025-3-25 09:23:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:02 | 只看該作者
Analytic Complex Multiplication, admits a Riemann form, and such a projective embedding is obtained by projective coordinates given by theta functions. We shall not need to know anything about such theta functions aside from their existence. An . is a complex torus which admits a Riemann form.
24#
發(fā)表于 2025-3-25 19:25:47 | 只看該作者
Georges Bastin,Jean-Michel Coroneader should end up knowing the same basic theorems. Because of my background, I use the terminology of Weil (generic points when needed), and the language of reduction mod . is that of Shimura. I have recalled with proofs some elementary definitions and properties, and without proof some of the more advanced results in this direction.
25#
發(fā)表于 2025-3-25 21:21:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:56:19 | 只看該作者
Patricia E. Rao,Daniel J. Kroonre of Langlands concerning the conjugation of Shimura varieties [Lglds]. Tate reformulates the conjecture in terms of a “type transfer”. The first two sections of the chapter give the general algebraic number theory setting for this type transfer, and the final sections give the application to the abelian varieties with complex multiplication.
27#
發(fā)表于 2025-3-26 04:28:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
29#
發(fā)表于 2025-3-26 15:08:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:07 | 只看該作者
0072-7830 lication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to mak
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武山县| 那曲县| 邓州市| 越西县| 远安县| 临夏市| 淮安市| 林周县| 迭部县| 兰溪市| 安国市| 天门市| 全南县| 义乌市| 修文县| 樟树市| 吉木乃县| 谷城县| 昭通市| 仙游县| 青浦区| 五莲县| 纳雍县| 许昌市| 横山县| 大港区| 凌源市| 烟台市| 泉州市| 阿城市| 侯马市| 望奎县| 兴和县| 宁南县| 芦山县| 绿春县| 水城县| 兴山县| 横峰县| 鄂州市| 奉贤区|