找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics; Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201

[復(fù)制鏈接]
查看: 48003|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:34:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics
編輯Vincent Guedj
視頻videohttp://file.papertrans.cn/232/231473/231473.mp4
概述The first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics;  Vincent Guedj Book 2012 Springer-Verlag Berlin Heidelberg 201
描述.The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of K?hler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,
出版日期Book 2012
關(guān)鍵詞32-XX, 53-XX, 35-XX, 14-XX; Complex Monge-Ampere equations; Geodesics in the space of Kaehler metrics;
版次1
doihttps://doi.org/10.1007/978-3-642-23669-3
isbn_softcover978-3-642-23668-6
isbn_ebook978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics被引頻次學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics年度引用學(xué)科排名




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋




書(shū)目名稱Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:16 | 只看該作者
Monge–Ampère Equations on Complex Manifolds with Boundary
板凳
發(fā)表于 2025-3-22 02:56:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:00 | 只看該作者
0075-8434 irenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson)..Each chapter can be read independently and is based on a series of lectures by?R. Berman,978-3-642-23668-6978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 12:39:48 | 只看該作者
Vincent GuedjThe first self contained presentation of Krylov‘s stochastic analysis for the complex Monge-Ampere equation.A comprehensive presentation of Yau‘s proof of the Calabi conjecture.A great part of the mat
6#
發(fā)表于 2025-3-22 15:08:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:17:43 | 只看該作者
Complex Monge–Ampère Equations and Geodesics in the Space of K?hler Metrics978-3-642-23669-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
8#
發(fā)表于 2025-3-23 00:31:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:59:25 | 只看該作者
Book 2012etric properties of solutions, approximation) on compact K?hler manifolds (with or without boundary)..These operators are of central use in several fundamental problems of complex differential geometry (K?hler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新昌县| 双牌县| 通州市| 张家港市| 高州市| 盐城市| 东兰县| 台中县| 巨野县| 修武县| 富裕县| 苏尼特左旗| 漳浦县| 望城县| 金寨县| 汪清县| 伊吾县| 六枝特区| 青铜峡市| 安溪县| 宜宾县| 绥棱县| 阿克| 罗定市| 固镇县| 永嘉县| 鲜城| 揭阳市| 柘城县| 邻水| 栾川县| 荣成市| 濉溪县| 平乐县| 手游| 行唐县| 怀化市| 襄城县| 灵丘县| 抚松县| 凌云县|