找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Methods for Partial Differential Equations; Heinrich G. W. Begehr,A. Okay Celebi,Wolfgang Tuts Book 19991st edition Kluwer Academi

[復(fù)制鏈接]
樓主: Interjection
51#
發(fā)表于 2025-3-30 10:56:39 | 只看該作者
52#
發(fā)表于 2025-3-30 15:09:23 | 只看該作者
53#
發(fā)表于 2025-3-30 16:40:41 | 只看該作者
54#
發(fā)表于 2025-3-31 00:12:52 | 只看該作者
1388-4271 applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many b978-1-4613-3293-0978-1-4613-3291-6Series ISSN 1388-4271
55#
發(fā)表于 2025-3-31 04:36:44 | 只看該作者
56#
發(fā)表于 2025-3-31 05:07:13 | 只看該作者
57#
發(fā)表于 2025-3-31 11:58:44 | 只看該作者
A Reflection Principle and its Applications,ed by a reflection principle, which is proved on weaker assumptions than the Plemelj formulas. Especially one gets rid of H?lder continuity and Ljaponov conditions of the boundary. With the help of this reflection principle, a generalization of the Poisson formula is proved, if there exists a suitab
58#
發(fā)表于 2025-3-31 17:22:07 | 只看該作者
On a Generalized Riemann-Hilbert Boundary Value Problem for Second Order Elliptic Systems in the Plions in form of Cauchy type integrals with real density satisfying a H?lder condition on the boundary [9]. Such a representation is used in the present paper to investigate the problem.where ...The theory of two-dimensional singular integral equations [7] is applied here. In [1, 2] other Riemann-Hil
59#
發(fā)表于 2025-3-31 21:05:09 | 只看該作者
An Application of the Periodic Riemann Boundary Value Problem to a Periodic Crack Problem,first fundamental bundary value problem. By approaches using the solutions of periodic Riemann boundary value problems and a singular integral equation with Hilbert kernel, we obtain the expression for the Stress Intensity Factors (SIF) in closed form for any loading on the crack face. As a concrete
60#
發(fā)表于 2025-3-31 22:51:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼海市| 海城市| 黎平县| 介休市| 兴国县| 柘城县| 东莞市| 嘉荫县| 博客| 新营市| 呼伦贝尔市| 商南县| 黄龙县| 商城县| 武清区| 华宁县| 长海县| 津市市| 尉氏县| 清涧县| 土默特左旗| 青海省| 彭州市| 宝清县| 海南省| 望谟县| 绥中县| 电白县| 镇坪县| 巴楚县| 阿荣旗| 集安市| 萍乡市| 榕江县| 琼海市| 东莞市| 高青县| 淄博市| 秭归县| 泰安市| 孝感市|