找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Harmonic Splines, Periodic Quasi-Wavelets; Theory and Applicati Han-lin Chen Book 2000 Springer Science+Business Media Dordrecht 20

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:29:01 | 只看該作者
Theoretische Grundlagen und Einordnung,ral equation of the second kind (see [Ke], [GW], [KS1], [KS2], [Ya1], [Ya2], [Kr]).. ∈ [0,2π], where.. is a constant, .(., .) is a continuous function of . and ., with period 2π in each variable, .(.) and .(.) are continuous periodic functions.
12#
發(fā)表于 2025-3-23 15:07:15 | 只看該作者
The Application of Quasi-Wavelets in Solving a Boundary Integral Equation of the Second Kind,ral equation of the second kind (see [Ke], [GW], [KS1], [KS2], [Ya1], [Ya2], [Kr]).. ∈ [0,2π], where.. is a constant, .(., .) is a continuous function of . and ., with period 2π in each variable, .(.) and .(.) are continuous periodic functions.
13#
發(fā)表于 2025-3-23 20:39:36 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:45:50 | 只看該作者
,L?ndervergleich USA und Deutschland,Periodic problems appear in various physical phenomena and mathematics which motivate an extensive study of periodic multi-resolution analysis (see [Me], [NW], [PB], [PT1], [PT2], [CM], [PT3], [C2], [C8], [C9], [C10], [CLJ], [CLP] and [CP1]).
16#
發(fā)表于 2025-3-24 06:41:47 | 只看該作者
Periodic Quasi-Wavelets,In this section we introduce the so-called periodic orthonormal quasiwavelets. The kind of wavelet which we want to construct possesses orthonormality; the numbers of terms in the decomposition and reconstruction formulas are strictly limited, the localization is not emphasized, and such a kind of wavelet we call quasi-wavelets.
17#
發(fā)表于 2025-3-24 13:27:15 | 只看該作者
The Periodic Cardinal Interpolatory Wavelets,Periodic problems appear in various physical phenomena and mathematics which motivate an extensive study of periodic multi-resolution analysis (see [Me], [NW], [PB], [PT1], [PT2], [CM], [PT3], [C2], [C8], [C9], [C10], [CLJ], [CLP] and [CP1]).
18#
發(fā)表于 2025-3-24 16:35:51 | 只看該作者
https://doi.org/10.1007/978-3-663-08963-6he explicit expressions of the solution. So we need to construct approximating functions from the given conditions. For instance, the construction of conformal mappings is an important problem both in theoretical study and in practice in various areas, (see p.53, Note 1). In this regard we would lik
19#
發(fā)表于 2025-3-24 19:17:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:13:05 | 只看該作者
Klaus Laubenthalies for dealing with waste in and around urban areas: Waste-to-energy power plants (WTEs) and recycling. Chapters in this volume describe how these plants can be built within or near cities to transform the non-recycled residues of society into electricity and heat, and the recovery of metals using
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新| 密云县| 禹城市| 秦皇岛市| 阿克陶县| 吉安县| 比如县| 娄烦县| 西藏| 濉溪县| 常山县| 泗水县| 横峰县| 宁晋县| 拜泉县| 平利县| 凤阳县| 伊金霍洛旗| 葫芦岛市| 桦川县| 兰州市| 佛冈县| 安福县| 张掖市| 济阳县| 南川市| 鞍山市| 桑植县| 多伦县| 泰宁县| 普安县| 宁安市| 普宁市| 博白县| 临江市| 凤阳县| 额济纳旗| 灌云县| 龙游县| 龙泉市| 容城县|