找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry and Dynamics; The Abel Symposium 2 John Erik Forn?ss,Marius Irgens,Erlend Forn?ss Wol Conference proceedings 2015 Springer

[復(fù)制鏈接]
樓主: 拿著錫
31#
發(fā)表于 2025-3-26 23:52:42 | 只看該作者
Abel Symposiahttp://image.papertrans.cn/c/image/231448.jpg
32#
發(fā)表于 2025-3-27 04:35:11 | 只看該作者
Lorina Buhr,Stefanie Hammer,Hagen Sch?lzeled properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in
33#
發(fā)表于 2025-3-27 06:56:38 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:39 | 只看該作者
Rente und Zivilgesellschaft in ?gyptenurveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces. Volume 14 of surveys in differential geometry. International Press, Somerville, pp 111–129, 2009; Grushevsky and Krichever, Foliations on the moduli space of curves, vanishing in cohomology, and Calogero
35#
發(fā)表于 2025-3-27 13:41:43 | 只看該作者
Martin Beck,Andreas Boeckh,Peter Pawelkain .. with .. Let . be a holomorphic map sending .. into .. Assume . does not send a neighborhood of .. in .. into .. We show that . is necessarily CR transversal to .. at any point. Equivalently, we show that . is a local CR embedding from .. into ..
36#
發(fā)表于 2025-3-27 19:59:53 | 只看該作者
37#
發(fā)表于 2025-3-27 23:37:15 | 只看該作者
38#
發(fā)表于 2025-3-28 02:40:07 | 只看該作者
Soziologie der Reformbewegungen,us settings according to Ohsawa’s series papers, and present our optimal versions of Ohsawa’s .. extension theorems. We’ll discuss the problem in a general setting and present a solution of the problem in the general setting. We’ll give some applications of our results including a solution of the eq
39#
發(fā)表于 2025-3-28 06:23:02 | 只看該作者
Complex Geometry and Dynamics978-3-319-20337-9Series ISSN 2193-2808 Series E-ISSN 2197-8549
40#
發(fā)表于 2025-3-28 11:52:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 21:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 资兴市| 道真| 广宗县| 突泉县| 墨脱县| 遂昌县| 旬邑县| 改则县| 陈巴尔虎旗| 西乌| 巢湖市| 富民县| 赣州市| 仲巴县| 曲沃县| 朔州市| 沙洋县| 子洲县| 张北县| 林口县| 乐业县| 永宁县| 罗定市| 罗甸县| 平利县| 渭源县| 金塔县| 峨山| 萨迦县| 新河县| 辽中县| 龙泉市| 如东县| 保靖县| 宾阳县| 合川市| 来宾市| 桐梓县| 瑞安市| 遵义市|