找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex General Relativity; Giampiero Esposito Book 2002 Springer Science+Business Media Dordrecht 2002 Boundary value problem.Gravity.Min

[復(fù)制鏈接]
樓主: endocarditis
11#
發(fā)表于 2025-3-23 12:20:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:24 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:34 | 只看該作者
14#
發(fā)表于 2025-3-24 00:50:49 | 只看該作者
978-90-481-4518-8Springer Science+Business Media Dordrecht 2002
15#
發(fā)表于 2025-3-24 05:26:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:02:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80792-2n such vector spaces and their duals, realized by a symplectic form. Moreover, for Lorentzian metrics, complex conjugation is the anti-isomorphism between unprimed and primed spin-space. Finally, for any space-time point, its tangent space is isomorphic to the tensor product of unprimed and primed s
17#
發(fā)表于 2025-3-24 12:13:16 | 只看該作者
Ausbruch aus dem Elfenbeinturm,basic tools for studying conformal gravity within the framework of general relativity. This is achieved by defining and using the Bach and Eastwood-Dighton tensors, here presented in two-spinor form (relying on previous work by Kozameh, Newman and Tod). After defining .-spaces and Einstein spaces, i
18#
發(fā)表于 2025-3-24 16:06:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:31 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:16 | 只看該作者
Rainer Eising,Beate Kohler-Kochauge theory of the Poincaré group leads to its presence, the constraints are second-class and the occurrence of cosmological singularities can be less generic than in general relativity. In a space-time manifold with non-vanishing torsion, the Riemann tensor has 36 independent real components at eac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 理塘县| 吉木萨尔县| 哈巴河县| 韶山市| 雷州市| 谷城县| 梨树县| 马公市| 霍州市| 米脂县| 屯留县| 灌云县| 四川省| 新宁县| 昌都县| 旅游| 扎兰屯市| 杨浦区| 望江县| 沾化县| 潍坊市| 郸城县| 三明市| 禹城市| 桃源县| 鄂温| 资兴市| 托克托县| 唐山市| 康马县| 都昌县| 遵化市| 嘉定区| 姚安县| 皮山县| 吉安市| 亳州市| 望城县| 富源县| 乌鲁木齐市|