找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex General Relativity; Giampiero Esposito Book 2002 Springer Science+Business Media Dordrecht 2002 Boundary value problem.Gravity.Min

[復(fù)制鏈接]
樓主: endocarditis
11#
發(fā)表于 2025-3-23 12:20:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:24 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:34 | 只看該作者
14#
發(fā)表于 2025-3-24 00:50:49 | 只看該作者
978-90-481-4518-8Springer Science+Business Media Dordrecht 2002
15#
發(fā)表于 2025-3-24 05:26:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:02:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80792-2n such vector spaces and their duals, realized by a symplectic form. Moreover, for Lorentzian metrics, complex conjugation is the anti-isomorphism between unprimed and primed spin-space. Finally, for any space-time point, its tangent space is isomorphic to the tensor product of unprimed and primed s
17#
發(fā)表于 2025-3-24 12:13:16 | 只看該作者
Ausbruch aus dem Elfenbeinturm,basic tools for studying conformal gravity within the framework of general relativity. This is achieved by defining and using the Bach and Eastwood-Dighton tensors, here presented in two-spinor form (relying on previous work by Kozameh, Newman and Tod). After defining .-spaces and Einstein spaces, i
18#
發(fā)表于 2025-3-24 16:06:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:31 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:16 | 只看該作者
Rainer Eising,Beate Kohler-Kochauge theory of the Poincaré group leads to its presence, the constraints are second-class and the occurrence of cosmological singularities can be less generic than in general relativity. In a space-time manifold with non-vanishing torsion, the Riemann tensor has 36 independent real components at eac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梨树县| 都昌县| 博乐市| 恩施市| 云梦县| 浦城县| 麻江县| 时尚| 柏乡县| 乌恰县| 深水埗区| 盐边县| 南和县| 平乐县| 兴海县| 南部县| 青海省| 铜山县| 信阳市| 汤阴县| 宜宾县| 湾仔区| 榆树市| 周宁县| 南木林县| 德清县| 唐河县| 凯里市| 剑阁县| 乐山市| 增城市| 禄丰县| 迭部县| 岳池县| 青阳县| 马关县| 砚山县| 大冶市| 磐安县| 延边| 井陉县|