找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Data Analytics with Formal Concept Analysis; Rokia Missaoui,Léonard Kwuida,Talel Abdessalem Book 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 50447|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:52:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Data Analytics with Formal Concept Analysis
編輯Rokia Missaoui,Léonard Kwuida,Talel Abdessalem
視頻videohttp://file.papertrans.cn/232/231415/231415.mp4
概述Covers the state of the art of the research on the intersection of FCA and complex data analysis.An important approach for designing new, accurate, and scalable solutions for big data analytics facili
圖書(shū)封面Titlebook: Complex Data Analytics with Formal Concept Analysis;  Rokia Missaoui,Léonard Kwuida,Talel Abdessalem Book 2022 The Editor(s) (if applicable
描述FCA is an important formalism that is associated with a variety of research areas such as lattice theory, knowledge representation, data mining, machine learning, and semantic Web.?It is successfully exploited in an increasing number of application domains such as software engineering, information retrieval, social network analysis, and bioinformatics. Its mathematical power comes from its concept lattice formalization in which each element in the lattice captures a formal concept while the whole structure represents a conceptual hierarchy that offers browsing, clustering and association rule mining..Complex data analytics refers to advanced methods and tools for mining and analyzing data with complex structures such as XML/Json data, text and image data, multidimensional data, graphs, sequences and streaming data. It also covers visualization mechanisms used to highlight the discovered knowledge..This edited book examines a set of important and relevant research directions in complex data management, and updates the? contribution of the FCA community in analyzing complex and large data?such as knowledge graphs and interlinked contexts.? For example, Formal Concept Analysis and som
出版日期Book 2022
關(guān)鍵詞Formal Concept Analysis (FCA); Pattern Visualization; Information Processing; Implication Computation; C
版次1
doihttps://doi.org/10.1007/978-3-030-93278-7
isbn_softcover978-3-030-93280-0
isbn_ebook978-3-030-93278-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Complex Data Analytics with Formal Concept Analysis影響因子(影響力)




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis被引頻次




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis被引頻次學(xué)科排名




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis年度引用




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis年度引用學(xué)科排名




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis讀者反饋




書(shū)目名稱Complex Data Analytics with Formal Concept Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:20:14 | 只看該作者
FCA2VEC: Embedding Techniques for Formal Concept Analysis,Superseding ‘latent semantic analysis’ recent approaches like ‘word2vec’ or ‘node2vec’ are well established tools in this realm. In the present paper we add to this line of research by introducing ‘fca2vec’, a family of embedding techniques for formal concept analysis (FCA). Our investigation contri
地板
發(fā)表于 2025-3-22 06:34:58 | 只看該作者
Analysis of Complex and Heterogeneous Data Using FCA and Monadic Predicates,simplifies the pattern structure theory proposing to immerse context objects in a dedicated predicate space having the properties of an inference system. This way of managing objects and attributes (monadic predicates) joins the concepts developed in the theory of generalized convex structures, in p
5#
發(fā)表于 2025-3-22 11:20:11 | 只看該作者
6#
發(fā)表于 2025-3-22 12:58:41 | 只看該作者
Computing Dependencies Using FCA,not only in their semantics, but also, in the domains in which they are present: database design, knowledge discovery, data analysis, to name a few. Formal Concept Analysis and Pattern Structures has been used to characterize and compute different kinds of constraints. The fact that this unified fra
7#
發(fā)表于 2025-3-22 19:09:17 | 只看該作者
8#
發(fā)表于 2025-3-23 01:17:13 | 只看該作者
9#
發(fā)表于 2025-3-23 05:16:51 | 只看該作者
Formal Methods in FCA and Big Data,esearch field. The use of FCA in the context of big data provides a basis for better interpretability and explainability of results, usually lacking in other statistical approaches to data analysis; however, scalability is an important issue for FCA logic-based tools and techniques, such as the gene
10#
發(fā)表于 2025-3-23 06:08:38 | 只看該作者
Towards Distributivity in FCA for Phylogenetic Data,of elements such that the infimum of each couple of its elements exists, has an infimum. Since a lattice without its bottom element is obviously a ∨-semilattice, using the FCA formalism, we investigate the following problem: Given a semilattice . obtained from a lattice by deletion of the bottom ele
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿迁市| 临安市| 韶山市| 高陵县| 泰和县| 仁布县| 石柱| 林州市| 改则县| 静安区| 贺兰县| 宜阳县| 得荣县| 商南县| 会泽县| 满城县| 新乡县| 萨嘎县| 河西区| 定远县| 东丰县| 梅河口市| 临海市| 永和县| 延津县| 石景山区| 漳州市| 宁河县| 拉萨市| 巩义市| 东光县| 洛宁县| 营山县| 浦江县| 云浮市| 吉林省| 桐柏县| 青海省| 淄博市| 清镇市| 历史|