找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Convexity and Analytic Functionals; Mats Andersson,Ragnar Sigurdsson,Mikael Passare Book 2004 Springer Basel AG 2004 Pseudoconvexi

[復(fù)制鏈接]
查看: 41213|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:22:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Complex Convexity and Analytic Functionals
編輯Mats Andersson,Ragnar Sigurdsson,Mikael Passare
視頻videohttp://file.papertrans.cn/232/231414/231414.mp4
概述The topic of complex convexity is a fascinating blend, exhibiting a profound interplay between geometry, topology and analysis.Gives the first comprehensive account of the theory, as well as its appli
叢書名稱Progress in Mathematics
圖書封面Titlebook: Complex Convexity and Analytic Functionals;  Mats Andersson,Ragnar Sigurdsson,Mikael Passare Book 2004 Springer Basel AG 2004 Pseudoconvexi
描述.A set in complex Euclidean space is called .C.-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of André Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations..
出版日期Book 2004
關(guān)鍵詞Pseudoconvexity; analytic function; differential equation; partial differential equation; partial differ
版次1
doihttps://doi.org/10.1007/978-3-0348-7871-5
isbn_softcover978-3-0348-9605-4
isbn_ebook978-3-0348-7871-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 2004
The information of publication is updating

書目名稱Complex Convexity and Analytic Functionals影響因子(影響力)




書目名稱Complex Convexity and Analytic Functionals影響因子(影響力)學(xué)科排名




書目名稱Complex Convexity and Analytic Functionals網(wǎng)絡(luò)公開度




書目名稱Complex Convexity and Analytic Functionals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Convexity and Analytic Functionals被引頻次




書目名稱Complex Convexity and Analytic Functionals被引頻次學(xué)科排名




書目名稱Complex Convexity and Analytic Functionals年度引用




書目名稱Complex Convexity and Analytic Functionals年度引用學(xué)科排名




書目名稱Complex Convexity and Analytic Functionals讀者反饋




書目名稱Complex Convexity and Analytic Functionals讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:06:15 | 只看該作者
Hongmei Shan,Meina Li,Leilei Lint under projective mappings. In Section 1.1 we discuss very briefly conditions that characterize convexity in ?.. In Section 1.2 we introduce fundamental geometric concepts in real projective space ??. such as projective lines, projective hyperplanes and projective mappings. In Section 1.3 we defin
板凳
發(fā)表于 2025-3-22 00:40:36 | 只看該作者
https://doi.org/10.1007/978-3-030-32456-8space ??.. The concept of ?-convexity is the natural complex analogue to usual convexity, and we examine to what extent this analogy holds. The main results are that open or compact ?-convex sets have the Hahn-Banach property of being linearly convex, and that their dual complements are ?-convex. Th
地板
發(fā)表于 2025-3-22 07:23:45 | 只看該作者
5#
發(fā)表于 2025-3-22 10:06:25 | 只看該作者
Zhenzhou Tian,Binhui Tian,Jiajun Lv main result in Section 4.1 is that any such operator is surjective if . is an open or compact ?-convex set and that every solution . of the homogeneous equation .(δ). = 0 is a locally uniform limit of exponential solutions. The Laplace transformation l of analytic functionate is the main tool for s
6#
發(fā)表于 2025-3-22 13:20:53 | 只看該作者
https://doi.org/10.1007/978-3-0348-7871-5Pseudoconvexity; analytic function; differential equation; partial differential equation; partial differ
7#
發(fā)表于 2025-3-22 20:44:49 | 只看該作者
978-3-0348-9605-4Springer Basel AG 2004
8#
發(fā)表于 2025-3-22 22:10:03 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:20 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/231414.jpg
10#
發(fā)表于 2025-3-23 05:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 15:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁城县| 辰溪县| 双江| 鲜城| 河东区| 文水县| 阿拉善盟| 弥渡县| 台北县| 钟祥市| 明光市| 泗洪县| 岚皋县| 田林县| 晋江市| 东乡族自治县| 蛟河市| 洛川县| 凭祥市| 静安区| 普安县| 锡林郭勒盟| 九龙县| 阜宁县| 昭苏县| 临汾市| 天等县| 溧水县| 平定县| 遂昌县| 嫩江县| 余江县| 清远市| 阆中市| 刚察县| 普兰县| 延寿县| 屯昌县| 巧家县| 中方县| 雷州市|