找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Special Topics in Harmonic Analysis; Carlos A. Berenstein,Roger Gay Book 1995 Springer-Verlag New York, Inc. 1995 Com

[復制鏈接]
樓主: Julienne
31#
發(fā)表于 2025-3-26 23:48:12 | 只看該作者
Integral Valued Entire Functions,ain rather easily those properties of entire functions of exponential type that can be derived from their behavior on sequences of the form . ≥ ., . ∈ ?. It also provides an elementary method to study the analytic continuation of power series of the form Σ. . (n)., where . is an entire function of e
32#
發(fā)表于 2025-3-27 05:06:08 | 只看該作者
Summation Methods,tar-shaped with respect to the origin, to which . admits an analytic continuation. Let us denote by .(.) that domain. (Why is it well defined?) We shall obtain .(.) as the union of certain domains .(.),such that in each of them we shall be able to describe explicitly the analytic continuation of .,
33#
發(fā)表于 2025-3-27 09:01:15 | 只看該作者
Harmonic Analysis,s ., . ∈ ?, in their study of the vibrating string. It is known that every .-function which is 2π-periodic in the real line has an expansion of the form En . (we remind the reader one can estimate these coefficients . very precisely, and that we do not need to restrict ourselves to .-functions). It
34#
發(fā)表于 2025-3-27 11:03:26 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:41 | 只看該作者
llow Cornford‘s admirable trans- lation as closely as possible, though the reader will find some significant deviations. The most notable of these concerns the key word on which I have rendered throughout as "being," thus avoiding Cornford‘s "existence" and "reality" which tend to prejudge the issues which th978-90-247-1580-0978-94-010-2012-1
36#
發(fā)表于 2025-3-27 19:56:36 | 只看該作者
37#
發(fā)表于 2025-3-28 01:14:53 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宣威市| 西乌珠穆沁旗| 京山县| 南华县| 呼伦贝尔市| 桂阳县| 山西省| 张家川| 西吉县| 铜陵市| 阿鲁科尔沁旗| 蚌埠市| 嵊泗县| 德钦县| 集贤县| 景东| 苏尼特左旗| 高陵县| 固安县| 甘孜县| 健康| 金湖县| 郎溪县| 滨州市| 鲁山县| 衡阳县| 新河县| 松溪县| 开封市| 达州市| 凤凰县| 惠来县| 重庆市| 柯坪县| 铜川市| 万州区| 茌平县| 门头沟区| 中阳县| 怀安县| 德庆县|