找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; International Confer P. Dolbeault,A. Iordan,J.-M. Trépreau Conference proceedings 2000 Springer Basel AG 200

[復(fù)制鏈接]
樓主: Auditory-Nerve
41#
發(fā)表于 2025-3-28 17:30:52 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:14 | 只看該作者
https://doi.org/10.1007/978-3-662-54639-0General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
43#
發(fā)表于 2025-3-29 01:01:01 | 只看該作者
,Présence de I’oeuvre de Pierre Lelong dans les grands thèmes de recherches d’aujourd’hui,This talk has been given for the opening of the Conference in honor of Pierre Lelong (Paris, September 1997). We have selected the main topics of P. Lelong’s research which are still up to date and productive.
44#
發(fā)表于 2025-3-29 05:48:32 | 只看該作者
45#
發(fā)表于 2025-3-29 11:12:14 | 只看該作者
Hypoellipticity: Geometrization and speculation,To any finite collection of smooth real vector fields . . in ?. we associate a metric in the phase space T??.. The relation between the asymptotic behavior of this metric and hypoellipticity of., in the smooth, real analytic, and Gevrey categories, is explored.
46#
發(fā)表于 2025-3-29 15:21:15 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:24 | 只看該作者
Pointwise nonisotropic support functions on convex domains,We construct holomorphic support functions on a smoothly bounded, convex domain of finite type in ?. which satisfy sharp, nonisotropic estimates near the fixed boundary point where the functions vanish.
48#
發(fā)表于 2025-3-29 22:26:26 | 只看該作者
,Boundaries of Levi-flat hypersurfaces of ?2,General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
49#
發(fā)表于 2025-3-30 03:49:57 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/231375.jpg
50#
發(fā)表于 2025-3-30 06:56:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
加查县| 江口县| 清河县| 南充市| 阜新| 灌云县| 宝山区| 阜阳市| 庄浪县| 宜宾县| 峨眉山市| 石屏县| 龙南县| 湖州市| 灵寿县| 广宁县| 大洼县| 华坪县| 宜章县| 陆川县| 台州市| 车险| 栖霞市| 揭东县| 葵青区| 五台县| 洪洞县| 宁武县| 华阴市| 岳阳市| 监利县| 利津县| 密山市| 玛纳斯县| 南投县| 惠来县| 肃南| 和田县| 罗田县| 方正县| 大埔区|