找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; International Confer P. Dolbeault,A. Iordan,J.-M. Trépreau Conference proceedings 2000 Springer Basel AG 200

[復(fù)制鏈接]
樓主: Auditory-Nerve
41#
發(fā)表于 2025-3-28 17:30:52 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:14 | 只看該作者
https://doi.org/10.1007/978-3-662-54639-0General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
43#
發(fā)表于 2025-3-29 01:01:01 | 只看該作者
,Présence de I’oeuvre de Pierre Lelong dans les grands thèmes de recherches d’aujourd’hui,This talk has been given for the opening of the Conference in honor of Pierre Lelong (Paris, September 1997). We have selected the main topics of P. Lelong’s research which are still up to date and productive.
44#
發(fā)表于 2025-3-29 05:48:32 | 只看該作者
45#
發(fā)表于 2025-3-29 11:12:14 | 只看該作者
Hypoellipticity: Geometrization and speculation,To any finite collection of smooth real vector fields . . in ?. we associate a metric in the phase space T??.. The relation between the asymptotic behavior of this metric and hypoellipticity of., in the smooth, real analytic, and Gevrey categories, is explored.
46#
發(fā)表于 2025-3-29 15:21:15 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:24 | 只看該作者
Pointwise nonisotropic support functions on convex domains,We construct holomorphic support functions on a smoothly bounded, convex domain of finite type in ?. which satisfy sharp, nonisotropic estimates near the fixed boundary point where the functions vanish.
48#
發(fā)表于 2025-3-29 22:26:26 | 只看該作者
,Boundaries of Levi-flat hypersurfaces of ?2,General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
49#
發(fā)表于 2025-3-30 03:49:57 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/231375.jpg
50#
發(fā)表于 2025-3-30 06:56:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌珠穆沁旗| 社旗县| 韶关市| 桐乡市| 逊克县| 登封市| 政和县| 湖口县| 鞍山市| 海淀区| 承德市| 璧山县| 黔西县| 海口市| 文安县| 余江县| 南木林县| 南岸区| 连南| 东山县| 禄丰县| 海城市| 龙口市| 张家口市| 成都市| 永济市| 汉川市| 余庆县| 和平区| 新乡县| 弥渡县| 沙湾县| 新乡县| 团风县| 开远市| 嘉义市| 婺源县| 洞头县| 双辽市| 广德县| 恩平市|