找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復(fù)制鏈接]
樓主: children
41#
發(fā)表于 2025-3-28 17:32:12 | 只看該作者
A Problem List on Vector Bundles, volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
42#
發(fā)表于 2025-3-28 20:30:52 | 只看該作者
Overview: 978-1-4757-9773-2978-1-4757-9771-8
43#
發(fā)表于 2025-3-29 00:13:38 | 只看該作者
,Wo komme ich her – lokal und kulturell?,e induced map of local rings . . → . . has property P. In this chapter we give a criterion for ?(.) being constructible (resp., Zariski open) in .. Moreover, we verify this criterion for a wide class of properties P.
44#
發(fā)表于 2025-3-29 04:22:28 | 只看該作者
https://doi.org/10.57088/978-3-7329-9209-6trum of . .(Ω) (corona problem) has attracted some attention. The answer is known to be affirmative for many open sets in C ; see Ref. 4 for a discussion. The answer is not known in ?. . ≥ 2 even for the ball or the polydisk.
45#
發(fā)表于 2025-3-29 09:11:04 | 只看該作者
46#
發(fā)表于 2025-3-29 11:25:33 | 只看該作者
https://doi.org/10.1007/978-3-662-58125-4 volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
47#
發(fā)表于 2025-3-29 17:28:49 | 只看該作者
Wissenschaft und Verantwortung,Let . be a complex manifold of dimension . and let .→ . be a holomorphic vector bundle. Given a complex submanifold . of codimension 1, let res. be the residue homomorphism from ...) to ...), where ...) denotes the ?0304-cohomology group of type (.). The purpose of this chapter is to establish the following theorem.
48#
發(fā)表于 2025-3-29 21:28:59 | 只看該作者
49#
發(fā)表于 2025-3-30 00:43:29 | 只看該作者
50#
發(fā)表于 2025-3-30 07:12:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡县| 蓬莱市| 修武县| 庆安县| 广宁县| 古交市| 武强县| 南华县| 巫溪县| 孟村| 玉屏| 金湖县| 德江县| 沭阳县| 诸暨市| 平定县| 凤凰县| 阜宁县| 漳州市| 铁岭县| 无棣县| 温泉县| 土默特左旗| 湾仔区| 伊春市| 梓潼县| 视频| 繁昌县| 汉川市| 湄潭县| 宜君县| 文安县| 宣城市| 烟台市| 方城县| 许昌县| 邳州市| 新宁县| 汝州市| 聊城市| 寿光市|