找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Articles dedicated t Joseph Hersch,Alfred Huber Book 1988 Birkh?user Verlag Basel 1988 Complex analysis.Meromorphic funct

[復(fù)制鏈接]
樓主: SCOWL
51#
發(fā)表于 2025-3-30 09:54:35 | 只看該作者
Diagnostik sprachlicher Kompetenz, [8, 9, 10]. Here interpolation was studied both as a tool and for its own sake. Constructing explicit interpolation formulas, Pfluger and others, notably N. Levinson, obtained very precise results; for details, see the books by R.P. Boas [2] and B. Ya. Levin [6].
52#
發(fā)表于 2025-3-30 14:19:00 | 只看該作者
Vom Zusammenhalt der Sprache im Sprechenm the number of fixed points of . is at most 2. + 2. This result has in recent years been generalized to non-compact Riemann surfaces (cf. [P/L] for . = 0 and [M], [S] for . ≥ 0). Our paper contains new proofs of that fact.
53#
發(fā)表于 2025-3-30 17:08:29 | 只看該作者
Cross-ratios and Schwarzian Derivatives in Rn, have been favorably received. For some time I had hoped to improve on the results of the paper, but as years went by my research took a different direction, and it became implausible that I would add anything significant to the paper as it stands.
54#
發(fā)表于 2025-3-31 00:31:38 | 只看該作者
Conformal Mappings onto Nonoverlapping Regions, = |.(0)| the . of . with respect to .. Roughly speaking, our problem is to find . functions . which map the disk conformally onto nonoverlapping regions .. whose union has prescribed transfinite diameter ., with the centers .. as far apart as possible and the inner radii |..| as large as possible.
55#
發(fā)表于 2025-3-31 01:06:50 | 只看該作者
On Wiener Conditions for minimally thin and rarefied Sets, sup .(.), . → ., . ∈ .. If . is non-positive on ?. and sup..(.)/.. < ∞, it is known that.where the exceptional set . is minimally thin at infinity in . (cf. [5]) and the exceptional set . is rarefied at infinity in . (cf. [3]).
56#
發(fā)表于 2025-3-31 08:14:13 | 只看該作者
57#
發(fā)表于 2025-3-31 10:56:45 | 只看該作者
58#
發(fā)表于 2025-3-31 14:35:43 | 只看該作者
Konforme Verheftung und logarithmisches Potential, des logarithmischen Potentials in Verbindung gebracht werden kann. Schon 1960 hat H. Grunsky [1] auf einen solchen Zusammenhang hingewiesen. In der vorliegenden Note berichten wir kurz über einen andern von der konformen Verheftung zum logarithmischen Potential führenden Weg.
59#
發(fā)表于 2025-3-31 17:48:28 | 只看該作者
,Interpolation by Entire Functions in ? — another Look, [8, 9, 10]. Here interpolation was studied both as a tool and for its own sake. Constructing explicit interpolation formulas, Pfluger and others, notably N. Levinson, obtained very precise results; for details, see the books by R.P. Boas [2] and B. Ya. Levin [6].
60#
發(fā)表于 2025-3-31 22:54:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 二连浩特市| 泸定县| 吉林市| 定远县| 平塘县| 永和县| 新疆| 安康市| 芜湖县| 鄄城县| 惠来县| 日喀则市| 新宾| 平遥县| 延庆县| 尚义县| 杂多县| 麻江县| 理塘县| 德清县| 阜康市| 瑞金市| 元氏县| 蒙山县| 西乌珠穆沁旗| 措美县| 博爱县| 察哈| 花垣县| 葫芦岛市| 丰台区| 浠水县| 巴马| 寿光市| 三穗县| 兴海县| 灵璧县| 灵川县| 咸宁市| 清新县|