找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Rolf Busam,Eberhard Freitag Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Complex Analysis.Elliptic

[復(fù)制鏈接]
樓主: 揭發(fā)
11#
發(fā)表于 2025-3-23 12:17:48 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:50 | 只看該作者
Elliptic Functions, lengths of ellipses. Already in 1718 (G.C. FAGNANO), a very special elliptic integral was extensively investigated,.It represents in the interval ]0, 1[ a strictly increasing (continuous) function. So we can consider its inverse function .. A result of N.H. ABEL (1827) affirms that . has a meromorp
13#
發(fā)表于 2025-3-23 18:03:52 | 只看該作者
Elliptic Modular Forms,new type of symmetries. These functions are analytic functions on the upper half-plane with a specific transformation law with respect to the action of the full elliptic modular group (or of certain subgroups) on H, namely.Functions with such a transformation behavior are called ...We will see that
14#
發(fā)表于 2025-3-24 01:58:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:04:57 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:52 | 只看該作者
17#
發(fā)表于 2025-3-24 12:38:35 | 只看該作者
Exklusiv und emotional: Sprache im Internet,matically using such expressions and found 4 as a solution of the equation . in the disguised form.Also in the work of G.W. LEIBNIZ (1675) one can find equations of this kind, e.g..In the year 1777 L. EULER introduced the notation . for the . unit.
18#
發(fā)表于 2025-3-24 15:55:38 | 只看該作者
Introduction,matically using such expressions and found 4 as a solution of the equation . in the disguised form.Also in the work of G.W. LEIBNIZ (1675) one can find equations of this kind, e.g..In the year 1777 L. EULER introduced the notation . for the . unit.
19#
發(fā)表于 2025-3-24 19:24:59 | 只看該作者
https://doi.org/10.1007/978-3-322-89369-7C.F. GAUSS— as well as the rather lengthy period of uncertainty and unclarity about them, is an impressive example in the history of mathematics. The historically interested reader should read [Re2]. For more historical remarks about complex numbers see also [CE].
20#
發(fā)表于 2025-3-24 23:23:46 | 只看該作者
Differential Calculus in the Complex Plane C,C.F. GAUSS— as well as the rather lengthy period of uncertainty and unclarity about them, is an impressive example in the history of mathematics. The historically interested reader should read [Re2]. For more historical remarks about complex numbers see also [CE].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦川县| 张家口市| 女性| 昌平区| 北辰区| 宜城市| 全州县| 南江县| 龙里县| 基隆市| 黎平县| 福泉市| 昌宁县| 双牌县| 天等县| 通化市| 开化县| 天台县| 罗源县| 分宜县| 射洪县| 蓬安县| 漳州市| 沙田区| 新竹市| 咸丰县| 大洼县| 高雄县| 大田县| 石嘴山市| 九龙县| 娄烦县| 湖北省| 北安市| 沐川县| 吉木乃县| 高安市| 万州区| 秦皇岛市| 吉安市| 五华县|