找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; In the Spirit of Lip Rubí E. Rodríguez,Irwin Kra,Jane P. Gilman Textbook 2013Latest edition Springer Science+Business Med

[復制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:14:32 | 只看該作者
https://doi.org/10.1007/978-3-642-00342-4ize all simply connected domains in the extended complex plane. The first two sections of this chapter study the action of a quotient of the group of two-by-two nonsingular complex matrices on the extended complex plane, namely, the group PSL(2, .) and the projective special linear group. This group
12#
發(fā)表于 2025-3-23 15:53:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:29 | 只看該作者
https://doi.org/10.1007/978-3-658-22569-8 own names. These are, of course, functions that arise naturally and repeatedly in various mathematical settings. Many of these functions are defined by infinite products. Examples of such . functions include Euler’s Γ-function, the Riemann ζ-function, and the Euler Φ-function. We will study only th
14#
發(fā)表于 2025-3-24 00:03:21 | 只看該作者
The Cauchy Theory: Key Consequences,e chapter is very short, it includes proofs of many of the implications of the fundamental theorem in complex function theory (Theorem?1.1). We point out that these relatively compact proofs of a host of major theorems result from the work put into Chap.?4 and earlier chapters.
15#
發(fā)表于 2025-3-24 05:40:45 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:38 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/c/image/231348.jpg
17#
發(fā)表于 2025-3-24 12:19:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:15:33 | 只看該作者
19#
發(fā)表于 2025-3-24 20:01:47 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:23 | 只看該作者
Anja Wildemann,Lena Bien-Miller theory of holomorphic functions, a role beyond enabling the construction of complex transcendental functions that are the extension of the real transcendental functions. A much stronger result holds. All holomorphic functions are (at least locally) convergent power series. This will be proven in the next chapter.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 02:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
方城县| 兰州市| 福安市| 平谷区| 烟台市| 龙南县| 和政县| 洪湖市| 河北区| 克什克腾旗| 兖州市| 小金县| 于田县| 海安县| 梓潼县| 富民县| 游戏| 阳城县| 绥中县| 克什克腾旗| 临夏县| 双牌县| 华亭县| 北海市| 淮滨县| 泰宁县| 奎屯市| 靖江市| 同仁县| 太湖县| 满城县| 蒲江县| 台中市| 浦江县| 陆良县| 新疆| 尤溪县| 菏泽市| 万州区| 托克逊县| 武夷山市|