找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; In the Spirit of Lip Rubí E. Rodríguez,Irwin Kra,Jane P. Gilman Textbook 2013Latest edition Springer Science+Business Med

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:14:32 | 只看該作者
https://doi.org/10.1007/978-3-642-00342-4ize all simply connected domains in the extended complex plane. The first two sections of this chapter study the action of a quotient of the group of two-by-two nonsingular complex matrices on the extended complex plane, namely, the group PSL(2, .) and the projective special linear group. This group
12#
發(fā)表于 2025-3-23 15:53:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:29 | 只看該作者
https://doi.org/10.1007/978-3-658-22569-8 own names. These are, of course, functions that arise naturally and repeatedly in various mathematical settings. Many of these functions are defined by infinite products. Examples of such . functions include Euler’s Γ-function, the Riemann ζ-function, and the Euler Φ-function. We will study only th
14#
發(fā)表于 2025-3-24 00:03:21 | 只看該作者
The Cauchy Theory: Key Consequences,e chapter is very short, it includes proofs of many of the implications of the fundamental theorem in complex function theory (Theorem?1.1). We point out that these relatively compact proofs of a host of major theorems result from the work put into Chap.?4 and earlier chapters.
15#
發(fā)表于 2025-3-24 05:40:45 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:38 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/c/image/231348.jpg
17#
發(fā)表于 2025-3-24 12:19:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:15:33 | 只看該作者
19#
發(fā)表于 2025-3-24 20:01:47 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:23 | 只看該作者
Anja Wildemann,Lena Bien-Miller theory of holomorphic functions, a role beyond enabling the construction of complex transcendental functions that are the extension of the real transcendental functions. A much stronger result holds. All holomorphic functions are (at least locally) convergent power series. This will be proven in the next chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 琼中| 金乡县| 新化县| 攀枝花市| 东兰县| 小金县| 冕宁县| 壶关县| 高台县| 增城市| 远安县| 乌审旗| 玛沁县| 金华市| 娄底市| 奉节县| 东乡| 斗六市| 衡阳市| 定陶县| 盐边县| 腾冲县| 涟水县| 金坛市| 南康市| 化州市| 县级市| 湾仔区| 洪泽县| 黑山县| 天台县| 杭锦后旗| 霍山县| 安泽县| 镇安县| 湖南省| 阳新县| 如东县| 宜都市| 祥云县|