找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Proceedings of the I Klas Diederich Conference proceedings 1991 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschwe

[復(fù)制鏈接]
樓主: adulation
31#
發(fā)表于 2025-3-26 21:24:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:34 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:24 | 只看該作者
,Smooth proper modifications of compact K?hler manifolds,We study the class of compact complex manifolds which are proper modifications of compact K?hler manifolds. It is shown, by means of new results about positive .-closed currents, that they carry a balanced metric. The notion of p-K?hler manifold is introduced in order to attempt a classification of these modifications.
34#
發(fā)表于 2025-3-27 11:49:26 | 只看該作者
,Lp-Estimates for ?? in ?,Fornaess and Sibony [3] proved the following result on the one dimensional ??-operator:Theorem. 1 < . ≤ 2.
35#
發(fā)表于 2025-3-27 17:28:19 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:26 | 只看該作者
37#
發(fā)表于 2025-3-28 01:28:10 | 只看該作者
Scalar Curvature and Twistor Geometry,Let (M, g) be a 2n-dimensional oriented Riemannian manifold, let P(M) = P(M, SO(2n)) be the principal SO(2n)-bundle of oriented orthonormal frames over M and let Z(M) = ./. be the . of M.
38#
發(fā)表于 2025-3-28 06:08:34 | 只看該作者
,Lp-Estimates with Loss for the Bergman Projection and the Canonical Solution to ??,The aim of this note is to show that, in pseudo-convex domains, the Bergman projection and the canonical solution to the ??-equation satisfy . . estimates with loss: for . > 2, there exists . = .(.) > 2 so that the solution is in . . when the data is in . ..
39#
發(fā)表于 2025-3-28 06:27:37 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:14 | 只看該作者
,Representing Measures in the Spectrum of ,(Ω),Let Ω be a domain in ?., 0 ∈ Ω and denote by .(Ω) the analytic functions on Ω. (Ω) = .(Ω) ? .(Ω) and .(Ω) = .(Ω) ? .(Ω?) We denote by . the spectrum (= the multiplicative linear functionals) of .(Ω).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富顺县| 临朐县| 东辽县| 上栗县| 长宁县| 静乐县| 上蔡县| 湖北省| 万安县| 河津市| 葫芦岛市| 石家庄市| 会宁县| 鞍山市| 青铜峡市| 开阳县| 桂阳县| 北票市| 宝兴县| 唐海县| 花垣县| 通渭县| 进贤县| 富宁县| 道真| 宝丰县| 临沧市| 怀仁县| 江阴市| 彭泽县| 靖宇县| 林口县| 尤溪县| 全南县| 如皋市| 呼玛县| 宁海县| 土默特左旗| 临汾市| 天津市| 定边县|