找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Proceedings of the I Klas Diederich Conference proceedings 1991 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschwe

[復制鏈接]
樓主: adulation
31#
發(fā)表于 2025-3-26 21:24:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:34 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:24 | 只看該作者
,Smooth proper modifications of compact K?hler manifolds,We study the class of compact complex manifolds which are proper modifications of compact K?hler manifolds. It is shown, by means of new results about positive .-closed currents, that they carry a balanced metric. The notion of p-K?hler manifold is introduced in order to attempt a classification of these modifications.
34#
發(fā)表于 2025-3-27 11:49:26 | 只看該作者
,Lp-Estimates for ?? in ?,Fornaess and Sibony [3] proved the following result on the one dimensional ??-operator:Theorem. 1 < . ≤ 2.
35#
發(fā)表于 2025-3-27 17:28:19 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:26 | 只看該作者
37#
發(fā)表于 2025-3-28 01:28:10 | 只看該作者
Scalar Curvature and Twistor Geometry,Let (M, g) be a 2n-dimensional oriented Riemannian manifold, let P(M) = P(M, SO(2n)) be the principal SO(2n)-bundle of oriented orthonormal frames over M and let Z(M) = ./. be the . of M.
38#
發(fā)表于 2025-3-28 06:08:34 | 只看該作者
,Lp-Estimates with Loss for the Bergman Projection and the Canonical Solution to ??,The aim of this note is to show that, in pseudo-convex domains, the Bergman projection and the canonical solution to the ??-equation satisfy . . estimates with loss: for . > 2, there exists . = .(.) > 2 so that the solution is in . . when the data is in . ..
39#
發(fā)表于 2025-3-28 06:27:37 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:14 | 只看該作者
,Representing Measures in the Spectrum of ,(Ω),Let Ω be a domain in ?., 0 ∈ Ω and denote by .(Ω) the analytic functions on Ω. (Ω) = .(Ω) ? .(Ω) and .(Ω) = .(Ω) ? .(Ω?) We denote by . the spectrum (= the multiplicative linear functionals) of .(Ω).
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
曲松县| 健康| 阿巴嘎旗| 葫芦岛市| 巩义市| 三明市| 徐水县| 武强县| 蕲春县| 达拉特旗| 东乌珠穆沁旗| 华池县| 格尔木市| 普定县| 长海县| 当阳市| 三河市| 保山市| 集贤县| 苍山县| 长阳| 抚远县| 乌鲁木齐市| 凤冈县| 治多县| 枝江市| 泸溪县| 久治县| 右玉县| 镇平县| 博白县| 大同县| 沁源县| 双鸭山市| 天镇县| 左权县| 龙口市| 扶绥县| 柳州市| 茂名市| 会理县|