找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Abelian Varieties; Herbert Lange,Christina Birkenhake Book 19921st edition Springer-Verlag Berlin Heidelberg 1992 Abelian varietie

[復制鏈接]
查看: 52523|回復: 50
樓主
發(fā)表于 2025-3-21 17:37:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Abelian Varieties
編輯Herbert Lange,Christina Birkenhake
視頻videohttp://file.papertrans.cn/232/231336/231336.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Complex Abelian Varieties;  Herbert Lange,Christina Birkenhake Book 19921st edition Springer-Verlag Berlin Heidelberg 1992 Abelian varietie
描述Abelian varieties are special examples of projectivevarieties. As such theycan be described by a set ofhomogeneous polynomial equations. The theory ofabelianvarieties originated in the beginning of theninetheenthcentrury with the work of Abel and Jacobi. The subjectofthis book is the theory of abelian varieties over the fieldof complex numbers, and it covers the main results of thetheory, both classic and recent, in modern language. It isintended to give a comprehensiveintroduction to the field,but also to serve as a reference.The focaltopics are the projective embeddings of an abelianvariety, their equations and geometric properties. Moreoverseveral moduli spaces of abelian varieties with additionalstructure are constructed. Some special results onJacobiansand Prym varieties allow applications to the theory ofalgebraic curves. The main tools for the proofs are thetheta groupof a line bundle, introduced by Mumford, and thecharacteristics, to be associated to any nondegenerate linebundle. They are a directgeneralization of the classicalnotion of characteristics of thetafunctions.
出版日期Book 19921st edition
關鍵詞Abelian varieties; Abelian variety; Algebraic Curves; Theta Function; Theta Group; algebra; algebraic curv
版次1
doihttps://doi.org/10.1007/978-3-662-02788-2
isbn_ebook978-3-662-02788-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1992
The information of publication is updating

書目名稱Complex Abelian Varieties影響因子(影響力)




書目名稱Complex Abelian Varieties影響因子(影響力)學科排名




書目名稱Complex Abelian Varieties網絡公開度




書目名稱Complex Abelian Varieties網絡公開度學科排名




書目名稱Complex Abelian Varieties被引頻次




書目名稱Complex Abelian Varieties被引頻次學科排名




書目名稱Complex Abelian Varieties年度引用




書目名稱Complex Abelian Varieties年度引用學科排名




書目名稱Complex Abelian Varieties讀者反饋




書目名稱Complex Abelian Varieties讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:22:27 | 只看該作者
Endomorphisms of Abelian Varieties, finite dimensional ?-algebra. If moreover . is an abelian variety, any polarization . induces an antiinvolution .?.′ on End ?(X)(.), called the .. It is the adjoint operator with respect to the hermitian form ..(.).
板凳
發(fā)表于 2025-3-22 01:34:24 | 只看該作者
地板
發(fā)表于 2025-3-22 08:00:23 | 只看該作者
5#
發(fā)表于 2025-3-22 11:43:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:12:46 | 只看該作者
Lennard Funk,Mike Walton,Chye Yew Ng different constants .. If . = deg . is 1 or 2, an explicit integration by elementary functions is well known from calculus. If . = 3 or 4, integration is possible using elliptic functions. If however . ≥ 5, no explicit integration is known in general.
7#
發(fā)表于 2025-3-22 21:06:26 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:28:29 | 只看該作者
10#
發(fā)表于 2025-3-23 06:21:43 | 只看該作者
https://doi.org/10.1007/978-3-662-02788-2Abelian varieties; Abelian variety; Algebraic Curves; Theta Function; Theta Group; algebra; algebraic curv
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 23:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武冈市| 舟曲县| 囊谦县| 武强县| 望奎县| 清徐县| 绵阳市| 黄大仙区| 恩施市| 淳化县| 安泽县| 静乐县| 霍山县| 隆安县| 监利县| 六枝特区| 大荔县| 遂平县| 钦州市| 铅山县| 大田县| 乌审旗| 永登县| 桓台县| 洛南县| 晴隆县| 桐乡市| 峨眉山市| 桦甸市| 泸西县| 沈阳市| 防城港市| 彩票| 临海市| 祁连县| 灵寿县| 全椒县| 桃源县| 汶上县| 会理县| 永兴县|